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1.2 MECHANICS OF LAMINATED COMPOSITES,

Two types of mathematical models [1] are normally utilized to predict
the stress-strain response of a constituent lamina of a laminated composite
— micromodels and macromodels. The micromechanics approach to the
problem models the individual lamina as a periodic, or possibly a random,
array of filaments in a matrix, The average stress-strain response of the
lamina is a function of the elastic constants of the fiber and the matrix and
their respective geometries. The macromechanics approach ignores the
fiber-matrix behavior and models the individual lamina as a thin homogeneous
orthotropic medium (sheet) under a state of plane stress.

i.2.1 MICROMLECHANICS,

The strength and structural behavior of librous composites are
directly related to the elastic properties of the fiber and matrix, as well as
the micro-geometry of the laminate [1]. The ficld of micromechanics
encompasses the study of the internal stress distribution in the fiber and matrix
as a result of external loading. The objective of any micromechanics effort is
to predict the intrinsic macroscopic (average) material properties of a
laminate from the material and geometric properties of the constituents and
perhaps provide the basis for understanding failure modes and establishing
failure criteria from the predicted stress states,

With the present state-of-the-art, a micromechanics approach to
composites for aerospace application does not give the designer a design tool

which can be utilized to design aerospace structures, It is feasible that at
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some time in the future, the aerospace designer will begin his creation at the
fiber and matrix level and will use the analytical tools of micromechanics to
determine his desigr_l parameters. However, at present the advanced
composites come to the fabrication stage in a preimpregnated tape form with
the ﬂlament spacing and other parameters established. Of course, some of
the predictions resulting from micromechanic analyses were utilized in
establishing a good filament spacing to insure good transverse and shear
- propertieq in the final laminate; however, this represents a limited
application of micromechanics to designs.
1,2.2 MACROMECHANICS,

With the present state-of-the-art, the macromechanic approach [1] to

the mechanics of filamentary composites is the most usable technique for the

aerospace designer or stress analyst. The elastic constants and stress-strain
response of an individual lamina may be determined experimentally, and these
data may subsequently be used to determine the stress-strain response of a

laminate composed of any orientation of the characterized laminae,
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For a filamentary composite (¥Vig. F1.2-1), the constituent laminae

FIGURE F1, 2-1,

FILAMENTARY
COMPOSITE WITH THREE
MUTUALLY PERPENDICULAR

PLANES OF SYMMETRY

have three mutually perpendicular planes
of elastic symmetry [1]. As discussed
previously, a material with three
mutually perpendicular planes of
symmetry was termed orthotropic;

therefore, the possibility exists to

model the lamina as a homogeneous

orthotropic medium, Since the

thickness of an individual lamina is small relative to its other dimensions, it

may be considered to be in a state of plane stress.

The constitutive equation

for the K-th lamina is then given by equation (F1.1-17) or
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The lamina stiffness matrix terms were defined in equation (F1. 1-18) and are

rewritten here as

(ri. 2-2)
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Cyp= VoEq( _ VisE oo
(1-vivy) (1-vivy)

and
Ces = G2

As shown in equation (F1, 1-8), the compliance matrix may be determined

by inverting the stiffness matrix. This would result in

_ - K g B K i -K
€, Sy Sy 0 9,
(F1, 2-3)
€ =] S S 0
8 12 ©22 0'5
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where
i
Sy = Ey .
i
Sz = Eyp
y y (F1, 2-4)
= 2 - _ 22
Sz Ey Eyp
and
i
Sss - a- .

Since the lamina principal axes (a, ) generally do not coincide with
the laminate reference axes (x, y) (Fig. 1.2-2), the stresses and strains for
each lamina must be transformed as discussed previously. When this occurs,
the constitutive relations for each lamina must also be transformed to the
laminate reference axis system. The transformations, as discussed in

paragraph Fi, 1,1, are



Section F1.0

1 October 1971

Page 37

FIGURE F1, 2-2, GENERAL LAMINALE ORIENTATION

WITH LAMINATE REFERENCE AXIS
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(F1. 2-5)

(F1.2-6)

where {T] is defined in equation (F1. 1-3) and K denotes the K-th lamina,

Then

={T]™! |o

(F1.2-7)

The transformation matrix, T, may be written' in a shortened form as

(T]

where

and

n’ 2mn

-2mn

-mn mn mz-nzj

m =cos 8

n = gin 0 .

-

(Fi.2-8)
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Note that the inverse of the T matrix, [T] !, may be obtained by
substituting for the positive angle 6 a negative angle 6 (refer to Fig. 1.2-2),

Using equations (F1.2-1), (F1.2-6), and (F1. 2-7), the lamina

constitutive equation, when transformed to the laminate reference axes, is

. _K . K
g e
X X
o = [T ek 1y € X (F1.2-9)
y y
1 7
thyd ..ﬂxyd

The transformed lamina stiffness matrix [C'] is defined as

Cyy Cpp 2C
16

K - K - = =
= [T]1[C']7IT] =| Cpp Cyp 2Cy (F1. 2-10)

[C]

Cip Cog 2C¢

where the terms Eij are given by equation (F1.1-29). The C! matrix,

which is now fully populated (Cy;# Co; # 0), appears to have six elastic
constants which govern the lamina behavior; however, Em and 6_26 are not
independent as they are linear combinations of the four basic elastic constants.
In the transformed coordinate system, the C' matrix is similar in appearance
to the C matrix for a fully anisotropic lamina (Ew # 0 and _626 # 0), and the
lamina is said to be "generally' orthotropic. Therefore, equation (F1, 2-9)

is said to be the constitutive equation for a "generally' orthotropic lamina.
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Equation (F1. 2-1) is referred to as the constitutive equation for a "specially"

orthotropic lamina (Cyq = Cyq = 0).

For convenience, equation (F1i. 1-29) may be written as

Cyy=(8J3+J,) +Jgcos 20 +J,cos 40,

622= (373 +J9) -J3co8 268 +J,cos 48,

E‘u= (Jy-Jg) ~Jycos 486, (F1.2-11)
Ceg= (Jy +dy) ~ T cos 40,
Cu=%J38n26+J,sin 40,
and
Cos=4J38in26-J,8in46
where
Jy=+4 [Cy + Cy+ 2Cy] ,
J2=4% [Cg - Cpal , (F1. 2-12)
Js=4% [Cy - Cal,
and

'J4=‘&‘ [Cu"‘ Cn- 2012 - 4066] .

Note that Eu, Ezz- 61:. and Ess are composed of a term independent
of the angie of rotation (6) and a term dependent on the angle of rotation.
Therefore, it is evident that there are certain inherent lamina properties

which are onlyl dependent on the material being used.
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1.2.2.2 Laminate Constitutive Relationship.

From Reference 1, for the formulation of a mathematical model of a
laminate composed of orthotropic laminae, certain assumptions regarding the
interaction between adjacent laminae must be made. Since practical uses of
a Iaminafe will normally dictate that it be thin relative to its other dimensions,
the Kirchhoff-Love hypothesis (stresses perpendicular to the middle surface may
be neglected, and the line segments originally normal to the middle surface
remain straight and normal to the deformed surface and suffer neither_extensions
nor contractions) used in thin-plate and shell theory appear reasonable.

Essentially, these assumptions reduce to

5 qQ K 0 ) - .
€ € X
X X X
0
€ = € -z X (IF'1. 2-13)
y y y
, “/0 ')\’
)xy Xy Xy
L- -4 d - b ~

0 0 0 . . .

where € |, € |, and y are the strains at the geometric middle surface
X y Xy

of the laminate, and the y's are the middle surface curvature. The

transformed limina constitutive equation, similar to equation (F1, 2-9), is

then
i (a2 7 GO ;- X ]
X X X
o | =1e® | |-atct™ | x (F1.2-14)
\' Yy y
70 2x
L ij L Xy | | Xy
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where
Cy Cy Cy
. [-5] = -6-12 _622 C?G . . (F1.2-15)

Cyg Czg Cgg

This equation then relates the stress in the K-th lamyina, oriented to the
laminate reference a'xiS, ‘to the laminate middle surface strains and curvatures.

On an element of the laminate, the stress resultants and stress couples

are defined as

}(2
N = o dz ,
X i/2 X
(F1.2-16)
t/2
N = odz ,
and
t/2
N = f T dz
and‘
t/2
M = f zo dz ,
X b4
-t/2
(Fi. 2-17)
t/2
M = f zg dz
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and

t/2

M = f z-rx dz

These integrals may be evaluated by integrating over each lamina and summing
the results of each integration. By substituting equation (F1. 2-14) into

equations (F1. 2-16) and (F{, 2-17),

r’ - [- - = fo B r' i F -
B
N Ay Ap Ay € By Bpa Big| | X,
N = 1A Ay Ayl |€© |-{Byy By Dyl | x (F1. 2-18)
N y y
(0]
N A A A B B B 2%
Xy 16 4 66 ny 16 26 66 )\yj
e - - 4 . - - 4 L
r
- p. - - r 0 - -
MX Byt By By € D, Dy Dy [ x
(@]
. -| Dy Dy D x | (Ft.2-19)
My Bz By By €y 12 Dzs Dy y
(]
) D D D 2
Mxy i By By Be(s_ ] ny 16 Dog  Dgg Xny
where
[ 2 1T 0%, -, )
A = C - r ) . b= 0
i} = tC K~ Py (F1.2-20)
n —_ K
-1 C h, - he. ) -
lBij] : K_Zril ij] (h*x - h% ¢, (F1.2-21)
and
[D,.] =} er: (C ]K (hk - W3k _¢) . (F1.2-22)
it UKy KT UK '

Refer to Fipure F1. 2-3.
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FIGURE F1.2-3. LAMINATE ELEMENT
Equations (F1.2-18) and (F1, 2-19) are the constitutive equations for a

laminated composite. They may be written as

= ) (F1, 2-23)

This is the general constitutive equation for laminated composites and

is mathematically equivalent to the constitutive equation for a heterogeneous
anisotropic medium. In this general form, the significant point is that there

is coupling between extensional (membrane) deformation and bending



Section F1.0

1 October 1971

Page 45
deformation caused by the existence of the B matrix (Fig. F1-2.4). In other
words, even within the limits of small deflection theory, forced curvatures
within the laminate induce in-plane loads through

this type of coupling. This coupling is caused by the

neutral axis and the midplane of the laminate not

FIGURE F1. 2-4, being coincident.
COUPLING OF
DEFORNMATION DUE TO With various combinations of laminae,

B MATRIX
varying degrees of coupling may be caused. If the

laminate is fabricated symmetric about the midplane (balanced), the B matrix

will be identically zero, and the constitutive equation reduces to

[N] = [A] L€°] (I'1. 2-24)

and

[(M] - -[D] [x] . (F1. 2-25)

These equations are mathematically cquivalent to the constitutive equations
of a homogeneous anisotropic material. lHence, this type of laminate is
referred to as homogeneous anisotropic (Fig. F1.2-5). At this stage the A
and D matrices are fully populated and anisotropic in nature, and a second
type of coupling still exists. For the A matrix the Az and Ay terms couple

the normal strains and shear stress, or the shear strains and normal stress.
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For the D matrix the Dyq and Dy, terms couple the

normal bending moments and twisting curvatures,

and vice versa. If the laminate is symmetric about

: the x-y (laminate) axis (Fig. F1.2-6), this coupling
FIGURE F1, 2-5.
COUPLING EFFECTS IN may be reduced.

A HOMOGENEOUS
ANISOTROPIC LAMINATE When the laminate has equal numbers

of pairs of laminae symmetric about the x-y axis (termed angleply laminate) ,

+ .
FIGURE F1. 2-6. LAMINATE SYMMETRIC ABOUT THE x-y AXIS

the A matrix is orthotropic in nature (A = Ay = 0) (Fig. F1,2-7). The
D matrix is still fully populated and anisotropic in nature. When the laminate -

has equal numbers of pairs of laminae at angles of 0 deg and 20 deg to the
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x-y axis (termed crossply laminate), the D matrix
and the A matrix are orthotropic in nature.
Because of the warpage which will occur

during the fabrication process when symmetry does

not exist, the laminates should be designed

FIGURE F1. 2-7.

LAMINATE EXIIBITING symmetric about the midplane, or nearly so.
ORTHOTROPIC
CHARACTERISTICS Since most laminates are symmetric
about the midplane, and because the majority of applications of advanced
composites experience relatively low transverse shear strength, a

reexamination of cquation (F1, 2-24) is warranted. Llquation (F1.2-24) may

be written as

- N - r..e -
X X
N ~ 1Al € (F1.2-20)
y y
N . v
L X‘V‘ L .\y_J

when no bending occurs. Dividing both sides by the total laminate thickness

yields
T (e ]
X X
i
T iy (A] |¢ , (F1.2-27)
y y
T Y
L R LY
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(F1. 2-28)

The o's are the average laminate stresses, and the A matrix may be defined

as the laminate stiffness matrix. Thus,

[¢ [ 5
X X
€ = [Ax] | @
y y

-1'..

.%yny [ XY

where the laminate compliance matrix is
* ok b 1
Ay Agy 3Ag

-1 ok 0 s
[Ax] = [A]7) = [Ay, Ay 34y

T T
[Atg Az 28 |

(F1.2-29)

(F1. 2-30)
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The gross or average luminate clastic moduli may be obtained from the

laminate compliance matrix. For o balanced angleply laminate,

Ay Ay 0 Ay Ap 0
— 1
[[\] i ;\12 ‘Xzz 0 s [J’\J = T lez A22 0N N
L|; 0 Ag 0 0 274
and
A=) = [AG gy O . (ri. 2-31)

) 1. B

Theun, comparing equation (F1.2-29) with equation (F1, 2-3), the gross

laminate elastic constants arc

1
I N e s
X2
Ny
1
]:" 4 l—“:f V 4
vh Aoy
i
G - (T'1, 2-32)
Xy g
Ay
y . _ A
Xy e ’
Ayq
J\:":
U .o B2
yXx
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1.2.3 EXAMPLE: CALCULATIONS,
The example problems which follow demonstrate some of the

computations involved when working with composite materials.

1.2,3.1 Example Problem 1.

Calculate the A, B, and D matrices of the laminate constitutive equation
for a three-ply laminate with the laminae oriented at - 45 deg, 0 deg, and

+45 deg with the laminate axis (see the following sketch). The lamina material

obeys
- - o - n
o, 30. 1, 0. l'ea
= 108 1. 3. 0. € .
% 8
T | 0 0 i.J Y
| o8| 8]
-45°| 0.1 in.
0°| 0.21in.
+45°] 0.1 in,

I. Example Problem 1 Laminate.

The [C] for the - 45-deg lamina and the +45-deg lamina must be
transformed to the laminate axes. Since the lamina material is homogeneous
orthotropic, the values of the transformed stiffness matrix may be calculated

using equation (F1, 1-29) or equation (F1, 2-11),
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Using equation (F1.1-29), the Eij terms of equation (F1.2-15)

for the 45-deg lamina are

Cyy = 108 [30. cos? (-45) + 2(1. + 2.) sin® (-45) cos® (-45) + 3. sin? (-45)]
=9.75 % 10®
626 = 10% [ (80.-1.-2.) sin® (-45) cos (-45) + (1.-3.+2.) sin (-45) cos® (-45) ]
= -6.75 x 10° .
Then,
9. 75 -6, 75
R 9.75 7.75 5. 75
[C] = 108 7.75 9.75 -6.75
-6.75 -6.75 7.75

Similarly, for the +45-deg lamina

9,75 7.75 6.75
[51(3) = 108 7.75 9,75 6.75 .
6. 75 6.75 7.75
For the 0-deg lamina
30. 1. 0.
[E](z) = [c] = 108 1. 3. 0.
0 0. 1

From equation (F1. 2-20),

n

- <y (K)
B 7 }21 () (hy - hy_y)
- 01 1M vozic ) vorc Y.
ij ij ij
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Thus,

108 [9.75x 0.1+ 30, x 0.2+ 9,75%x 0.1] = 7.95 x 10¢

>
P
-
1l

Ag = 108 [7.75%x 0.1+ 1, x0.2+7.75x 0,1] = 1.75x 108 .

7.95 1,75 0.
108 j1.75 2.55 0.
0. 0. 1,75

Il

[A]

From equation (F1i, 2-21)

n
B, =%z €)% o -n )

ij K=-1

=, (3) -, (1)
0,015 [(Cij) - (Cij) ] .

i K-1

Thus,
By = 108x0.015109.75 -9.75] = ©
and
Bgg = 0
0. 0. 0. 2025
[B}] = 10® Jo. 0. 0. 2025

0.2025 0.2025 0.
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From equation (F1i. 2-22}

- . =, (K) 3 3
D, %é;i (€ 7 % -n )
= 0. 00233[5,_1(1) + 0.00066 [E..]m + 0.00233 [E..Jm
ij ij ij

Thus,

Dy = 105 [9.75 x 0. 00233 + 30. x 0. 00066 + 9. 75 x 0. 00233]
e = 0.06522 x 108

Dge = 105 [7.75 % 0.00233 + 1. x 0. 00066 + 7. 75 x 0. 00233}
- 0.03676 x 108

0. 06522 0. 03676 0.
[D] = 108 0.03676 0. 0474 0.

0. 0. 0. 03676

Combining the results above, the constitutive equation may be written as

o — — | ’ —
N 7.95  1.75 0 0. 0. 0.2025 ||€°
X X
§
N 1.75  2.55 0. ' o. 0. 0.2025 ||e€°
y ! y
1
0
N 0 0. 1.75 ' 0.2025 0,2025 O, v
Xy I Xy
:106 ___________ | = = e o e e e e o = am =
M 0. 0. 0.2025' 0. 06522 0.03676 0. X,
]
]
M, 0. 0. 0.2025 0.03676 0,0474 0. X,
i
{
M 0.2025 0.2025 0. , 0. 0. 0. 03676 |2x
L XY L IR
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1.2.3.2 Example Problem 2.

Calculate the constitutive matrix for a four-ply laminate with laminae
at + 45 deg, - 45 deg, - 45 deg, and + 45‘deg and with a total laminate
thickness of 0. 4 in. (see the following sketch). Use, the same lamina material

as in paragraph 1, 2. 3. 1.

+ 45° 0.1 in,
- 45° 0.1 in,
- 45° 0.1 in,
+ 45° 0.1 in,

II. Example Problem 2 Laminate.
Since the laminate is symmetric about the midplane and symmetric

about the x-y axis, the constitutive equation will be in the form of

Nl [a o °
M 0. D =X
where
Ay A 0.
[A] = | Ay Ap O



and

Dyy Dy Dyg
[D] = |Dy; Dy Dy
Dig Dy Dg

Similar to paragraph 1. 2. 3. 1,

1 g e

and

c1? - e ® - 108

Using equations (F1,2-20) and (I'1. 2-22) ,

975
7.75
6.75

9.75
7.75
-6.75

3.9 3.1 0
(Al =10"|3.1 3.9 o
0. 0. 3.1
and
0, 05187 0.04123
[D] = 108| 0.04123 0.05187
0.027 0, 027

Therefore,
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7.75 6. 75

9.75 6. 75

6.75 7.75
7.75 -6.75
9.75 -6.75

-6.75 7.75

0.027

0,027

0.04123
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3.9 3.1 o, | 7]
]
3.1 3.9 0 : 0.
]
0. 0. 3 1:
= 106 T
I 0,05187 0.04123 0.027
]
]
0. 1 0.04123 0,05187 0.027
1
]
; 0.027  0.027  0.04123
— w—d b
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1.3 LAMINATE CODING,

In Reference 2 a laminate orientation code was devised for filamentary
composites which provided both a concise reference and a positive identification
of any laminate. As expressed in that reference, the following type of coding
is intended to provide a means of achieving conciseness in engineering
presentations and communications; however, it is neither recommended nor
discouraged that this code be employed on shop drawings since that policy is an
internal one which must be decided by each using organization.

1.3.1 STANDARD CODE LILEMLINTS,

The formulation of the code must be adequate to specify as concisely
as possible (1) the angles of laminae relative to a reference axis (the x-axis),
(2) the number of laminae at each angle, and (3) the exact geo;netric sequence
of laminae,

The basic laminate code will adhere to the following pguidelines [2]:

1. Each lamina is denoted by a number representing its orientation
in degrees between its filament direction (refer to Fig. 1, 0-3) and the
x-axis.

2. Individual adjacent laminne are separated by a slash if their
angles are different.

3.  The laminae are listed in sequence from one laminate face to the
other, with brackets indicating the beginning and end of the code. The first
lamina should be the most positive lamina in the z direction (refer to Fig.

F1i.2-3).
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4, /Adjacent laminae of the same angle are deonoted by a numerical
subscript.

5. A subscript T to the bracket indicates that the total laminate is
shown,

When adjacent laminae are of the same angle but opposite in sign, the
appropriate use of + or - signs may be employed. Each + or - sign
represents one lamina and supersedes the use of the numerical subscript,
which is used only when the directions are identical. Note that positive angles
are assumed to be counterclockwise,

Several exarhples are shown demonstrating the basic coding.

45 Code
0
-60
-60
30

[45/0/-60,/30] T

+45
-45 [£45/730/0/+(45,)] T
-30
+30

+45
+45
~-45
-45




Laminate

0
45
90
45

0
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Code

l0/45/90] S

A repeating sequence of laminae is termed a set. A set is coded in

accordance with the

Laminate

same rules which apply to a single lamina;

45
0
90

Set

45
0
90

Set [(45/0/90)411‘ or [45/0/90] AT

45
0
90

Set

45
0
90

Set

45

90
45

90
90

45

Set

Set [(45/0/90) 5] g Or [45/0/90] 08

Set

90

a0

Set
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1.4 COMPUTER PROGRAMS IN COMPOSITE ANALYSIS.

Several computer programs have been made available to MSFC and
support personnel to assist in analyzing composite material elements. These
programs have been (or are currently being) documented in References 4 and
5. The program names and a brief comment on each are shown in Table

Fi.4-1,



TABLE Fi. 4-1.
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Computer Programs in Composite Analysis

Program Name

Comment

CDLAMA
GDLAMT
GREPPA
INTACT

LAMCHK

LAP

LAPI

MMBCK

PANBUCK II

STAB

Yield analysis of composite plates composed of
orthotropic lamina with in-plane loading. -

Yield analysis of composite plates composed of
orthotropic lamina with in-plane loading.

Design composite skin/stringer/frame compression
panel.

Locates optimum strength envelopes for laminates
under the action of combined loading,.

Laminate check - computes margins of safety for
specified 0-deg, 90-deg, + 45-deg boron epoxy
laminates under combined loading.

Analysis of single overlap bonded joints with Metlbond
329 adhesive mechanical behavior.

Analyzes single overlap bonded joints and accepts
arbitrary applied loads and incorporates the B
basis correction factor.

Calculates the buckling loads of radially
inhomogeneous anisotropic, cylindrical shells
wherein the effects of boundary conditions are not
considered.

Panel buckling — calculates critical buckling loads
and mode for orthotropically layered, rectangular,
anisotropic plates and honeycomb sandwich panels.
Also computes local instability modes of failure for
composite panels,

Stability analysis — local instability analysis of
orthotropic honeycomb panels, columns, and beams
— failure-mode analysis for filament rupture,
intercell dimpling, and layer instability.
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