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Fi.0 COMPOSITES - BASIC CONCEPTS AND NOTATIONS.

The purpose of this section is to present state-of-the-art techniques
utilized in the design and stress analysis of advanced composite structures,
An attempt was made to keep the analytical developments and material as
elementary as possible. However, the stress analysis of composite materials
is more complex than that of conventional materials, and, as a result, the
analysis techniques and concepts may seem rather involved.

In order to understand the mechanics of laminated composites, one
must have a knowledge of certain basic definitions. These definitions, obtained
primarily from References 1, 2, and 3, are intended to serve not only as a

reference for this section but also as a guide to general literature on composite

materials.
AEOLOTROPY See anisotropic.
ANGLEPLY Any filamentary laminate constructed with

equal numbers of pairs of laminae with
symmetry about the coordinate (x, y) axis.
An alternate definition used frequently in
current literature, but not in this section,
is a laminate consisting of an even number

of layers having the same thickness, and
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the orthotropic axes of symmetry in each
ply are alternately oriented at angles of

+ 6 and - 6 to the laminate axes.

ANISOTROPIC Not isotropic; having mechanical and/or
physical properties which vary with
direction relative to natural reference

axes inherent in the material.

BALANCED COMPOSITE A composite laminate whose layup is

symmetrical with relation to the midplane

of the laminate (Fig. F1.0-1).
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FIGURE F1.0-1, BALANCED OR SYMMETRIC COMPOSITE
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BUCKLING Buckling is a mode of failure characterized

generally by an unstable lateral deflection
caused by compressive action on the
structural element involved. In advanced
composites, buckling may take the form not
only of conventional general instability and

local instability but also of a microinstability

of individual fibers.

COMPLIANCE MATRIX The compliance matrix is defined by the
equation €, = S_ a,, where S, are the
1 ] 1j
components of the compliance matrix; may

be obtained by inverting the stiffness matrix,

COMPOSITE MATERIAL Composites are considered to be
combinations of materials differing in
composition or form on a macroscale., The
constituents retain their identities in the
composite; that is, they do not dissolve or
otherwise merge completely into each other
although they act in concert. Normally,

the components can be physically identified
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and lead to an interface between components

(Fig. F1.0-2).

z

MATRIX

FIGURE F1.0-2. PRINCIPAL CONSTITUENTS OF COMPOSITE
LAMINA AND PRINCIPAL AXES

CONSTITUENT In general, an element of a larger grouping;
in advanced composites, the principal
constituents are the fibers and the matrix

(refer to Fig. F1.0-2),

CONSTITUTIVE Refers to the stress-strain (Hooke's Law)
relationships for a material because the
stress-strain relations actually describe

the mechanical constitution of the material.

CROSSPLY Any filamentary laminate constructed with
equal numbers of pairs of laminae at angles

of 0 deg and 90 deg to the laminate axes.
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An alternate definition used frequently in
current literature, but not in this section,
is a laminate consisting of an even number
of layers all of the same thickness with the
orthotropic axes of symmetry in each ply

alternately oriented at angles of 0 deg and

90 deg to the laminate axes.

The separation of the layers of material in

a laminate.

A single homogeneous strand of material,
essentially one-dimensional in the
macrobehavior sense, used as a principal
constituent in advanced composites because
of its high axial strength and modulus

(refer to Fig. F1.0-2).

The amount of fiber present as
reinforcement in a composite. This is
usually expressed as a percentage volume

fraction or weight fraction of the composite.
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The orientation or alignment of the

longitudinal axis of the fiber with respect

to a stated reference axis (Fig. Fi.0-3).

FIGURE F1.0-3. LAMINA AXIS ORIENTATION

FILAMENT

A variety of fibers characterized by
extreme length, such that there are
normally no filament ends within a part
except at geometric discontinuities,

Filaments are used in filamentary
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composites and are also used in filament

winding processes, which require long,

continuous strands.

FILAMENTARY COMPOSITES Composite materials of laminae in which
the continuous filaments are in nonwoven,
parallel, uniaxial arrays. Individual
uniaxial laminae are combined into
specifically oriented multiaxial laminates
for application to specific envelopes of
strength and stiffness requirements

(Fig. F1.0-4).

FIGURE F1.0-4. FILAMENTARY COMPOSITE

GENERALLY ORTHOTROPIC Descriptive term for a lamina for which

the constitutive equation, when transformed
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to an arbitrary set of axes, is fully

populated. That is, for

~ 1K - K r -]K
7 x Ci1 %2 Ci6l [ %
%y = 1C12Co0 Cogl |y
Txy 6 Co6 Cs "ny ,
Cig# 0 Ty #0,

Yield criterion using distortional energy

for isotropic materials:

(Ul - 0'2)2 + (0'2 - 0'3)2 + (0'3 - 0'1)2 + 6(0’122 + 0'232 + 0'312) = 20'02

HETEROGENEOUS

HILL

Descriptive term for a material consisting
of dissimilar contituents separé.tely
identifiable; a medium consisting of regions
of unlike properties separated by internal

boundaries; not homogeneous.

Generalized von Mises yield criterion to

account for anisotropy:
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2f(oij) = Al (0'2 - 0'3)2 + A2 (0'3 - 0'1)2 + A3 (01 - 0'2)2 + 2A4U232

+ 2850348 + 2840y,7 = 1,
where

- 2f (cri ) = the plastic potential,

)
2A; = (Fp) 2+ (Fy) 2- (Fp~ % ,
2A; = (Fg) "2+ (F) 2-(Fp~% ,
243 = (F) 2+ (Fp) %- (Fy % ,
28, = (Fp) %
2A; = (Fg ™2

2A¢ = (Fy) %

and Fy, Fy, and F; are determined from uniaxial tension or compression tests,

and Fy,, Fy3, and F3; are determined from pure shear tests.

HOMOGENEQOUS Descriptive term for a material of uniform
composition throughout; a medium which has
no internal physical boundaries; a material
whose properties are constant and isotropic

at every point.

HOMOGENEQOUS ANISOTROPIC Descriptive term for a material which has
no plane of material symmetry such as the

orthotropic material.
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HOMOGENEOUS ISOTROPIC
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INTERFACE

INTERLAMINAR SHEAR
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Descriptive term for a lamina which behaves

in a manner similar to the anisotropic

lamina,

Descriptive term for a lamina which has
a constant modulus of elasticity and the

Cy¢ = Cy¢ = 0 in its constitutive equation.

See interlaminar shear.

The boundary between the individual,
physically distinguishable constituents of

a composite.

Shear force which tends to produce a
relative displacement between two laminae
in a laminate along the plane of their

interface.

Descriptive term for a material which has

“uniform material properties in all

directions.

A single ply or layer in a laminate made of

a series of layers (Fig. F1i.0-5).
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FIGURE F1. 0-5.
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Plural of lamina (refer to Fig. F1,0-5),

A product made by bonding together two or
more layers of laminae of material or

materials (refer to Fig. F1.0-5).

The configuration of crossplied composite
laminate with regard to the angles of
crossplying, the number of laminate at each
angle, and the exact sequence of the

individual laminae,

A process of fabrication involving the

placement of successive layers of materials,

In relation to composites, denotes the gross
properties of a composite as a structural
element but does not consider the individual

properties or identity of the constituents,

The essentially homogeneous material in
which the fibers or filaments of a composite

are imbedded (refer to Fig. F1.0-2),
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In relation to composites, denotes the

properties of the constituents and their

effect on the composite properties.

Descriptive term for a material which has
three mutually perpendicular planes of

elastic symmetry.

The set of axes in a lamina which is
parallel and perpendicular to the filament
direction is called the lamina principal

axes (refer to Fig. Fi.0-2).

Descriptive term for a laminate which has
essentially isotropic stiffnesses and

perhaps strength,

Descriptive term for lamina for which
the Cyg = Cyg = 0 in its constitutive

equation.

A tensor is a physical entity in nature
which obeys certain transformation

relations., There are different orders of
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tensors, and each order has its own

transformation relations.

Descriptive term for a material exhibiting
a special case of orthotropy in which
properties are identical in two orthotropic
dimensions, but not in the third; having
identical properties in both transverse
directions but not the longitudinal

direction.

See Hencky-von Mises Distortional Energy

Theory.

An axis in the plane of the laminate which
is used as the 0 deg reference for
designating the angle of lamina (refer to

Fig. F1.0-5).

The axis in the plane of the laminate which
is perpendicular to the x-axis (refer to

Fig. F1.0-5).
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The reference axis normal to the plane of

the laminate (refer to Fig. F1i.0-5).
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1.1 BASIC CONCEPTS,

Some of the basic concepts applicable to all continuums, in particular
composites, are presented in this subsection. These include the concepts of
stress and strain at a point and their transformation relations.

1.1.1 STRESS AND STRAIN,

Following the guide of Reference 1, stress and strain relations at a
point will be reviewed to form a firm base for the analytical development for
composites,

A tensor, as defined previously, is some physical entity in nature
which obeys certain transformation relations. A scalar, for example, is a
tensor of zero-th order, and a vector is a tensor of first order. It is well
known that the components of a vector change when the coordinate system is
altered or rotated. This change in the components of the vector is governed
by certain mathematical relations or transformations. Ilach order of tensors
has its own transformation relations; therefore, it is necessary only to
establish that a physical entity is a tensor and determine its order, and the
transformation relations are defined.

Stréss and strain are both second-order tensors and their transformation
relations are well known (the graphical form of the transformation is the Mohr's
circle). These transformation relations may be derived from the equilibrium

relations of a small element, Consider a two-dimensional problem as shown
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in Fig. Fi.1-1, By summing forces in the 1" direction, the following

equation results:

oydA -0 (cos 6 dA) (cos 6) - ory (sin 6 dA) (sin 6)
- Txy (sin 6 dA) (cos 6) - Txy (cos 6 dA) (sin ) = 0 ,

or

oy1=0 cost 0+ o sin8+ 7 (2 sin 0 cos ) (Fi1.1-1)
X y Xy

2

az\\/ 1'1</01
Oy /\ /\\ 2 ]
N 2 01 9 149
SO o —0y [ U 0\/ AN
A
|

(4 Oy

a

Y
Y
FIGURE F1.1-1. STRESS COORDINATE ROTATION
In a similar manner, the other transformed stresses, o, and T4, may be
determined. These equations may be written in a form convenient for later

developments, a matrix form. Thus,
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oy [ cos? 6 sin® 6 (2 sin 0 cos 6) o
P! = sin® @ cos? 6 (-2 sin 8 cos 6) % | (Fi.1-2)
Tyo b(—sin 9 cos 0) (sin 9 cos 6) (cos?6 - sin?0) Txy

Using a more compact notation, we may write equation (F1.1-2) as

(o8] ()'X
(72 = lT] O'Y (Fi. 1—3)
Ty2 TXy

where [T] is the symbol for the transformation matrix. Equation (F1.1-3) is the
transformation relation for the stress tensor when reduced to a two-dimensional
space. Equation (F1.1-3) is the necessary relationship required to transform
any two-dimensional stress state from one set of coordinates to another set.

With a slight modification, the two-dimensional strain may be

transformed by the same transformation:

[~ € = ™ € -
X
e, | = LTI € ) (F1.1-4)
y
1 1
Lmz_l _.ﬂ"y..
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1.1.2 GENERALIZED HOOKE'S LAW,

In this paragraph the constants of proportionality between stress and
strain (Hooke's law constants) are shown to be components of a fourth-order
tensor and therefore have a set of transformation relations different from those
for stress and strain. Several forms of the Hooke's law relationships and the

elastic constants will be shown for the various material conditions.

1.1.2.1 Homogeneous Isotropic Material.

For the familiar homogeneous isotropic material in a one-dimensional

stress state [1], the Hooke's law relationship is

o =Ee . (Fi, 1-5)

The proportionality constant (E) is Young's modulus, or the modulus
of elasticity, and is a scalar value.

1.1. 2. 2 Elastic Linear Anisotropic Material.

Consider the most general material, but require elasticity and
linearity, which is the anisotropic material. This material has 21 elastic

constants. The constitutive equation (Hooke's law) is [ 2]

[ Cyy Cyy Cyg Cyq Cy5 Crg
Caz Ca3 Cgq Co5 Co
[o] = Ca3 Ca4 Cys Cag [e]. (F1.1-6)
Cyq Cy5 Cys
Css Cse
Ces

e ——

Symmetric
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The components Cij are called components of the "stiffness' matrix. The

equation may be written as

[ S11 St St Ste St Syg |
S92 Sp3 Sgg Sag Spg
[e] = S33 S34 Sz Sa¢ [o] (F1.1-=7)
Symmetric Sg4 Sgs Sg¢
S55 SSG

Ses

b —

‘where

[c] = [s]7t. (F1.1-8)

The components Sij are called components of the "compliance' matrix. The

[ o] conventionally symbolizes [ 3]

[o] = (F1.1-9)

Similarly,

[e] = (F1. 1-10)

Y13
Y12
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1.1,2,3 Monoclinic Material.

If a material possesses one plane of symmetry, it is termed a
monoclinic material and has 13 independent elastic constants. If the plane of

symmetry is assumed to be the x-y plane, the constitutive equations are [2]

[C44C12Cy3 0 0 Cyf
C2Cy 0 0 Cy

o] = Cgg 0 0 Cs [e] (F1.1-11)
CuCy O
Symmetric Cgs O
. Cer

and

511812813 0 0 stm1
S22 S35 0 0 Sy
[€l = 533 0 0 Sss [0']. (Fi. 1-12)

Sy S84 O
Symmetric Sg5 0

_ S |

1.1.2.4 Orthotropic Material,

If the anisotropic material possesses two orthogonal planes of symmetry,
assuming x =0 and z = 0, the material is termed orthotropic. In this
condition, there are only nine independent elastic constants, Note that if a
material has two orthogonal planes of symmetry, three orthogonal planes of

symmetry exist. The constitutive equations of the orthotropic material are



[[Cyy Cyg Ci3 0 0 0
CppCy 0 0 0
[U] = C33 0 0 0
Cy 0 0
Symmetric Css 0
Cs_sj
and
. w
S11S128;30 0 0]
5995990 0 0
[e] = Ss3 0 0 0
Sy 0 0
Symmetric S5 0
See
b -—
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[e] (F1,1-13)
o] . (F1.1-14)

Since most composite structures will be constructed of orthotropic

laminates, this material is of particular interest.

The engineering constants,

values which are establishable from uniaxial and pure shear tests, may easily

be equated to the components of the compliance matrix.

components are then

1 1
5117 Ey '’ S = Eyp '’
Syp = 2 Sgg = o2
Ey Eg
==Vat , =Ya ,
Ey Ea3
1 1
= Ser =
Seg Gy ’ %7 Gy
_1n ~ MNz2s
Sip = - Sgg = s

The compliance

1
Ty
-y
Soy =
31 E33
el v I (Fi,1-15)
Eqy
1
Su = Gos
Sop = Nag
36 E33
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where

Ej1, Eyy, E33 = Young's moduli in the 1, 2, and 3 (x, y, and z)

directions, respectively,

Vi' = Poisson's ration
J

_ strain in the j direction
strain in the i direction

caused by a stress in the i direction,

Gij = shear moduli in the i-j plane,

nij = shear coupling ratios.

Note that the Syz, Sy, and Si terms are used for a "monoclinic'
material. From equation (F1, 1-8), the components of the stiffness matrix may
be determined as

Cyp= (1 - vy vp) VEy

Cpo = (1 - vy Vy3) VEp ,

Ca3 = (1 - vyp ¥py) VEg3 ,

Cyp = (Vg + Vg3 Vgy) VEy ,

=(vyy +vy3vs) VEg ,
Cj:.] = (V31 + Vay Vsz) VEll , (Fi. 1—16)

={vi t vy vp) VEgz ,

Ca3 = (v3g + vy v31) VEy,

= (vgg + vay v13) VE33 ,
Cyy =Gy
Cs5=Ga1 »

and
Cge = Gy2 »
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_ , : -1
Vi= (1 - vy vy~ Vag Vg = Py Vi — 2V glg3V ) .

For an orthotropic material in a state of plane stress, the constitutive

equation is [1]

Cy Cyp O €4
Cyp Cpp O € (F1,1-17)

O 0 Cg | Ve

11
.
V]

(1 - vypvgy)

.————Z.ZH_E —

s (T1.1-18)
(1 = vpwg)

Mok . rpba
(1 - vy (1 - pigray)

Gy

Isotropic Material,

For an isotropic material, there are only two independent elastic

g1
T2
T12
where
Cu
Co
Cio
and
Ceg
1.1,2.5
constants.

The constitutive relations are [3]



fo] =

and

fe] =

[ C4yCpCp 0 0 0 |
C“ Cis 0 0 0
Cy 0 0 0

3 (Cy-Cp) 0 0
Symmetric 4 (Cyy - Cga) 0

2 (Cyy - C“’L

- —

841 Sy9 Si 0 0 0

Sy S 0 0 0
Symmetric Sy 0 0 0
2(84-8p). 0 O
2 (841 - 8p) 0

2 (8 - 8yy)

o a——
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[€] (F1,1-19)

(o] (Fi.1-20)

The constitutive constants may be defined in terms of the engineering

constants as

(1-v) E
Cu=Cn=Cou=11i oy (-2 °

VE
Ce=Cu=Cu~Ty (-2 °
. . E
Cu=Co=Ces=C=37773)

i
S11=822=5y="% ,

S1p=8y3= Sy =7

14
E ’

(Ft,1-21)



Section F1.0
1 October 1971
Page 27

and
1 _2(1+v)

S4s = S5 = Sg6 = 3 D

If the isotropic material is assumed to be in a two-dimensional stress state

(plane stress), equation (F1i.1-19) may be written as [ 1]

] 1T - S
[0 ] =| Cu Cpp 0 €1
Oq = Cn sz 0 €y (Fl. 1-22)
T 19 = 0 0 CGG Y12
N . L i L .
where
Al — E ’
(’11_'C22"~ (1_ 1)2)
1, 1-
. E (F 23)
127 (1 - VZ) ’
and
E
Con = 21+ 0) -

1.1,2.6 Transformation of Stiffness Matrix.

In Reference 1, the elastic constants (stiffness) for a material are
stated to be components of a fourth-order tensor and consequently, must obey
certain transformation relations. The transformation of a general anistropic
material, in three dimensions and rotated an angle 6 about the z-axis, is

given in Reference 2 as
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-a': =
(Cx] = [Tl [Cx] (F1.1-24)
where
Mt am amb ot gmd w7 T ST TTT T
| mipt mb+nt motmh  mfa? miemn?  -mh? II | ‘ ' ; !
| -2min Zmin-2on? méi-3min? 2mn' ambland min-me? ! ! ; ol
ot 2mw? -2mn? mt omb mh? | { g | [ {
| _zmn? 2ma’-2m%  3mil-n 2m’n  mé-amh? mnlmh | | I . ‘ Il |
Pt ot amitants gnnt o ama? (mint? ] ! il i L
| e
| 'mtn m? mn?  mn? m’n [ I ! : |
! lmn’ - m! omt -omf ma? | [ i Pl
: lo3 ! mh m' omn? omh l | I b
: [_2m% 2mn?! 2m% -2zmn? m’-mn? n'-mb | : f ; }
! 2 2 1 3l ma? |
b e e e -gma? -2min zmn’ emin mhen’ elmed .
I T- +m’ nt mn _J[ —* { i {
I ‘n’ m?! .mn | '
i | ] l }
e e il L]
| k | tm’ ~2mn n? | l _]
1 [ | {ma m¥o? -mnl { !
| (K] 3
{———————._._.———._——._._—-_—-—--—-:-. ———————————— —Q—.—_————“limn_l—l.__ |
'}_ 1 ! ! L -nl _}
_________________ o — e — ___.__.L_.._._._._.._T.__._ __._l n_._m_l_
e e e L o o e e ._L____.__J_______JT_._LEJ
(F1. 1-25)
The m and n terms represent
m = cos §
and (F1. 1-26)

n=sing .

The [C*] and [C*] are column matrix forms of equation (F1, 1-6) and

the transformed equation. The [C*] is defined as
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[Cx] = Cos (F1.1-27)
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and the [C*) is defined as
[Ty |
Ci2
2Cy
Cy
2Cyq

The transformation of the stiffness matrix for an orthotropic material
in a plane stress state is of particular interest since this will be of direct
applicability to fibrous composites. As shown in Reference 1, when the
elastic constants are needed with respect to some axis other than the material

axié, the transformed elastic constants are



Cu = Cll COS4 0+ 2 [CIZ+ ZC(;G] Sin.2 ] COS2 0 + sz Si,l’l‘1 0
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and

= Cysin® 6 + 2[Cyy+ 2Cg) sin® 6 cos? 6 + Cyy cos® 0,

[Cyy + Cpy - 4Cgg] sin® 6 cos* 0 + Cyy [sint 0 + cost 0]
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*

(F1i.1-29)

*

[Cy1+ Cyy - 2Cyp - 2Cgg) sin? 0 cos® 0 + Cg Isint 0 + cost 0] ,

[Cy3 - Cy3 - 2Cgl sin 0 cos® 0 + [Cyy - Cyy + 2Cg4] sind 0 cos 0,

C26 = [Cu - CIZ - 2C66] sin3 0 cos 8 + [C12 - C22 + 2CGG] sin @ C053 0.

The angle of rotation (8) is about the z-axis and assumed positive in

the counterclockwise direction.



