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E2 FRACTURE MECHANICS.

2.1 GENERAL.

Structures subjected to constant loads at moderate temperatures have
been designed primarily on the basis of the yield strength and/or ultimate
strength of the material. Many of thesc structures have failed prematurely at
stresses below the yield strength, with disastrous conscquences. These
brittle failures have occurred in such diverse structures as storage tanks,
suspension bridges, aircraft landing gears, and rocket motor cases. An
examination of such failures indicated one predominant feature: A small

defect or flaw was usually found at the failure origin.

Therefore, the key to brittle fracture control lies in understanding both
the weakening cffects of flaws and cracks in metals and those factors that
influence this effect. To be useful in an engincering sense, this understanding
must be translated into the types of tests and structural mechanics familiar
to the metal producer and designer. The body of knowledge concerning this

type of failure has become known as fracture mcchanics.

Basic to fracturc mechanics is the understanding of the state of stress
near the tip of a sharp crack and the relationship between gross stress and
flaw geometry. These concepts are discussed in subsection 2.2, Stress-

Intensity Factors.

Flaw growth or crack propagation under cyclic loads is a basic problem
which is handled best by fracture mechanics concepts. A thorough discussion

of flaw growth is given in subsection 2. 3.

Finally, subsection 2.4, Application of Fracturc Mechanics Technology,
relates stress-intensity factors and flaw growth to the engineering design and
analysis of structures. Particular attention is given to pressure-vessel design

because of its importance in the acrospace industry.
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2.1.1 Comparison of Fatigue and Fracture Mechanics.

Similarities and dissimilarities between fatigue and fracture mechanics
are summarized in Table E2-1, Both fatigue and fracture mechanics depend
primarily on results of laboratory tests; however, the fracture mechanics
concept makes it possible to handle fracture considerations in a quantitative

manner and has shown greater applicability to fatigue crack propagation.



Table E2-1. Similarities and Dissimilarities Batween Fatigue and Fracture Mechanics

Fatigue
Characteristics or Considerations

Fracture Mechanics
Characteristics or Considerations

Considers no initial material flaws, e.g.,
voids, inclusions, etc.

A B
Data presented in the form of a plot of
stress versus number of cycles to failure,
S.N. curve.

Life prediction utilizes cumulative damage
theories.

Analysis carried out in two steps:

1. Relating repeated loads to stress.

2. Evaluating stresses using the cumulative
damage theory to predict structural
life,

Does not consider sustained loading.

A purely analytical fatigue design method
is not yet available.

The scatter inherent in fatigue behavior
and in service conditions would require
that results be interpreted statistically.

Considers fractures for relatively large
numbers of cycles only (10 000 and over).

Assumes pre-existence of flaws, inhomogeneities
and discontinuities in a material.

Data presented in the form of stress intensity
factor versus cycles to failure or flaw growth
rates.

Life prediction is based on minimum flaw growth
potential, i.e., the growth of an initial flaw
to critical value.

Imposes limits on nondestructive inspections
and procedure,

Predicts fatigue behavior such as those
stemming from stress corrosion or fatigue.

Considers sustained loading.

Considers sequence of operational load.

Has shown greater applicability to fatigue
crack propagation because conditions for fatigue
are less than critical.

Considers fractures for relative small numbers
of cycles (0 < cycles < 10 000).

/¢ odeg
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2.2 STRESS-INTENSITY FACTORS.

To understand how fracture mechanics is used in design, it is helpful

first to learn some of the theory on which it is based.

The precise goal of fracture mechanics can be stated concisely: It
attempts to provide a quantitative measure of resistance to unstable crack
propagation. This measure must be independent of the size and shape of the
crack, the geometry of the part containing the crack, and the manner in which

external loads are applied to the part.

The search for a guantitative value focuses on the conditions in the

vicinity of the crack tip where fracture takes place.

The stress fields near crack
tips can be divided into three basic
types, each associated with a local
mode of deformation, as shown in
Fig. E2-1. The opening mode, I, is
associated with a local displacement
in which the crack surfaces move a. Mode I. b. Mode II.
directly apart. The edge-sliding
mode, I, is characterized by dis- ~
placements in which the crack sur-
faces slide over one another. In
mode III, tearing, the crack sur-
faces slide with respect to one c¢. Mode II.
another parallel to the leading cdge. FIGURE E2-1. THREE DISPLACE -
Mode I is the most critical mode and MENT MODES FOR CRACK
SURFACES

is the only one to be discussed in this

section. For information on modes IT and I11, sce Ref, 1.
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2.2.1 Plane Strain.

The stress conditions, or plane-strain elastic stress field, at the crack
tip for mode I are defined by the expressions shown in Fig. E2-2 (Ref. 2).
These equations give the components of stress (o = normal stress, T = shear
stress) in terms of the polar coordinates r and ¢ for opening-mode (per-

pendicular) crack surface displacements. Only the first term of each equation

STRESS

CRACK

’——/ - X

HORIZONTAL DISTANCE FROM CRACK FRONT

Kj

¢ o 3

e IN = SIN—-

Oy = v OOy (1+s ~SIN 2)
K| 2

Ox cos— (1 -salu-fsmi’f) ..
2 2

(2nrV/2 2

. - X s » ..
Tay u—,{,—,n-coszsm-fcos e

FIGURE E2-2. RELATIONSHIP BETWEEN STRESS-INTENSITY FACTOR,
K[, AND STRESS COMPONENTS IN THE VICINITY OF A CRACK
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is shown. The complete equations are power series in r/a {crack tip radius/
crack half-length). For practical purposes, all terms beyond the first are

negligible.

All the three stress components are proportional to a scalar quantity
that has been designated the stress-intensity factor, K[ This factor is
independent of r and ¢ and therefore gives a single description of the stress
intensity at any point near the crack tip. It is a purely numerical quantity
which, if known, provides complete knowledge of the stress field at the crack

tip.

The basic assumption in fracture mechanics is that an unstable frac-
ture occurs when KI reaches a critical value designated ch, commonly
called fracture toughness. It is important to appreciate the difference
between lﬁ and ch' The stress-intensity factor K is simply a coefficient
in an equation describing the elastic stresses in the vicinity of a crack tip.
Fracture toughness K[c is a particular value of KI corresponding to
unstable propagation of the crack. This value is a material property and
reflects a material's ability to withstand a given stress at a crack tip. The
difference between KI and KIc is analogous to the difference between stress
and strength for a body free of discontinuities,

Irwin (Ref. 3) used the expressions shown in Fig. E2-2 with the Green
and Sneddon analysis (Ref. 4) to show that the expression for the stress
intensity around the crack periphery for the embedded elliptical flaw (Fig.
E2-3) is

N 1/4
KI=-7£ 0"\13{-1- [azcos2¢+c2sinz¢]} ,
2
c .
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where ¢ is the uniform stress perpendicular to the crack. The parametric
equations of the flaw periphery are x=ccos ¢ and y=a cos ¢ , where ¢
is the semimajor axis of the ellipse, a is the semiminor axis of the ellipse,

and ¢ is the complete elliptical integral of the second kind corresponding to
the modulus k= [{c? - a?) /czl’/z;_ i.e.,

m/2 2 a2 1/2
6:_[/ 1-(c'a)sin2¢ /d¢

ot

or ®=1+4.593(a/2c)1*%5, Values of & can be obtained for various values

of a/2c from the graph shown in Fig. E2-4.

In seeking an expression for the stress intensity for a semielliptical

surface flaw in a finite-thickness plate, Irwin assumed that

| 1/4
KI=a‘?a~/a7 {—1- [a2c082¢+czsin2¢l} / ,
2
C

where a is a correction factor to account for the effect on stress intensity of
the stress.-free surface from which the flaw emanates, and v is a correction
factor to account for the effect on stress intensity of the plastic yielding around

the flaw periphery.

Values of @ and y were estimated by Irwin and considered valid for
surface flaws with a/c ratios less than one and flaw depths not exceeding 50
percent of the plate thickness. The resulting expression for the stress inten-

sity was

1
K = 1.1 N a(a/Q)i/z{-l- [a cos? ¢ + c? sin® ¢] } / ,
c
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]
|
l
I
l

FIGURE E2-3. EMBEDDED ELLIPTICAL-SHAPED CRACK UNDER
UNIFORM TENSILIS STRESS IN y-DIRLECTION
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FIGURE E2-4. SHAPE FACTOR VALUES
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where Q = ®? _0.212 (0 /o ys)z’ and o vs is the uniaxial yield strength
of the material. Figure E2-5 shows the relationship between Q and the flaw
depth-to-width ratio.

The maximum value of KI occurs at the end of the semiminor axis

of the ellipse and has a value of

K = L1 NT o (a/Q)1/

At some value of o the flaw size becomes unstable and propagates
rapidly. The value of KI computed at the inception of this instability is
called the critical value of KI and is designated KIc' Thus, KI is the

[

stress intensity necessary to cause fracture under plane-strain conditions

and is commonly called the plane-strain fracture toughness. Thus,
= 1.1~ 1/2
ch "o (a/ch)

Figure E2-6 is a graphical representation of this equation. Some typical

values of KIc for space shuttle materials are shown in Table E2-2.

Stress-intensity factors for other shapes of cracks, different loading

conditions, and crack location are given in Table E2-3.
2.2.1.1 Correction for Deep Surface Flaws.

For surface flaws that are deep with respect to plate thickness, that
is, when the crack approaches the opposite surface, Irwin's equation has been

modified by Kobayashi (Ref. 5) as follows:
K, = 1.1M, NT o (a/Q1?

where Mk is the magnification factor for deep flaw effects.
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Kic = 1.1V7 o (s/Q)¥2

APPLIED STRESS (0)

FLAW SIZE RATIO (a/Q)

FIGURE E2-6. APPLIED STRESS VERSUS CRITICAL FLAW SIZE RATIO

Experimental data obtained on several materials with varying flaw sizes
and shapes appear to provide a fair degrec of substantiation of the Kobayashi
magnification factor; however, more experimental investigations are being
performed. Typical curves for M, for two different materials are shown in

k
Figs. E2-7 and E2-8.
2.2.2  Plane Stress.

An important consideration in fracture mechanics is the ''state of
stress,"" or simply the directions and magnitudes of the applied stresses and
strains. In general, the state of stress in a body is three-dimensional, that

is, stresses and strains exist in all three principal directions,

For thin sheet specimens subjected to in-plane external loads which
do not vary through the thickness, a condition of plane stress is thought to
prevail. As such, strain in the thickness direction is virtually unsuppressed

and considerable plastic flow attends the cracking process.
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Table E2-2. Properties of Typical Materials Considered
for Use on Space Shuttle

Ftu Fty KIc Y
Alloy (ksi) (ksi) (ksi - in/?%)
4340 (High Strength) 260 217 52
4340 (Low Strength) 180 158 100
D6AC (High Strength) 275 231 61
DEAC (Low Strength) 218 203 112
18 Ni (250) 263 253 76
18 Ni (200) 206 198 100
12 Ni 190 180 226
9Ni-4Cr 190 180 160
HY - 150 150 140 250
T-1 115 100 180
2014-T6 66 60 23
2024-T4 62 47 28
2219-T87 63 51 27
6061-T6 42 36 7
7075-T6 76 69 26
6A1-4V (STA) 169 158 51
5A1-2.5 Sn 125 118 120
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Table E2-3. Stress-Intensity Factors

Case 1

-M-—l o

-L-lm-

Case 4

Periodic artay of cracks along a line in
a sheet, uniform stress at infinity

t v L Case 2 Case 3
Infinite cracked Infinite cracked Infinite sheet with
sheet with uniform sheet with uniform tunnel crack subject
normal stress at: . in-plane shear at to out-of-plane shesr
< infinity ’l <> I' infinity at jnﬁn“yp
bad -2
j____d Kl=a na X” ma Km=r na
e - - T — - -
Ky =Ky =0 K~ K =9 Ky =Ky=0
L]
_t R __® &
_20 w22 .J r-——u-a-.].-jb——i
P .
[

Case 5
Periodic array of cracks along a line in
a sheel, uniform in-plane shear stress at

Sk - fi.ﬁ
U“'@"‘T—VQJ

Pertodic array of cracks along a line in
a sheet. unitorm out-of-plane shear

Concentrated force on the
surface of a crack in an
infinite sheet

infinity at infinity
% 3 %
_ 2b ma 2h ma \% _ 2b ma
A (na tan Zh) K“ = r4/ma (ﬂ—l tan Y) K,“ = ty/na (— tan ’h)
K=Ky =9 Ky =K = 0 K=K, =0
Case 7 Case B

axial stress ficld

= 3.4 v (for planc strain)

k =P (aro ), 0 fx-1
I 2ym \a-b 2vma \¢ ]
Kk - =P k-1 Q at+h
1 2v/ma \k + 1 2yma \4a-b

Curved crack in equal bi-

!
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Table E2-3. (Continued)
Case 9 Case 12
Inclined crack in uniform Edge crack in a semi-in-
tension in infinite sheet finite body subjected to
shear
K’ = asin? §/ma
Ky=Ky=0
K" = osinfcosfvna
Klll = ryfma
-
Case 10
Crack in infinite sheet
subject to arbitrary force
and couple at a remote
peint Case 13
'l Central crack in strip subject
At right end to tension {finite width)
‘ i ®ei0) a+z, K| = o+/rma (A}
O S— i —_t
2+v/ma (1 +x) 1ot =2’ '.a-l[-a-‘ A= alb
x{a + 7o) - A f(x}
R | 0074 100
2% - a .
(2" =2 e | 5 0.207 103
. -— . 0.275 105
aP - iQ)(Zy ~zo) + ai(l + M } - 0137 l?)‘J
oV (? _ a4 0.410 113
(70 - 2) (2" - ") 1' 0.466 118
% £ (3-»)/(1 +v)forplane stress k= 3 - 4p for plane strain ggg; :%;
n = Xo * iyo 7o = Xg - iYe
oM
= One Crack — —Two Crack —  Case 11 Case 14 Kl = ———-—]-[—: glastny
L/r fiL/r) f(L/r} Cracks from hole in Notched heam in bending (h -2
Uniaxial Biaxial Uniaxial Biaxial infinite sheet K =K =0
Stress  Stress  Stress  Stress L [T 1)
Kl = g+La T -
0 3 2.26 3.39 2.26
0.1 2.73 1.98 2.73 1.98 K =0 o a/h g(a/h)
02 230 182 241 183 1 V—t YT T
03 204 1.67 2.15 1.70 v 0:|v 0.49
04 186 158 196 161 M A 2 0.60
0.5 1.73 1.49 183 1.57 0.3 066
06 164 142 171 152 o4 i
08 147 132 158 143 — 0 09
1.0 137 122 145 138 > 06 073
1.5 1.18 1.06 1.29 1.26
2.0 1.06 1.01 1.21 1.20
3.0 094 093 1.14 1.13
5.0 0B8] 081 1.07 1.06
100 075 Q.75 1.03 1.03
= 0707 0707 1.00 1.00
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f(a/b) f(a/b) fta/b) Cste 15
alh L/b=1 L/b=3 L/h e Double-edge notch
a1 113 1.12 1.12
02 [ BK] 111 142 ) [
0.3 114 1.09 LIz
04 1.16 1.06 114
0.s 1.14 1.02 115
06 110 1.01 1.22 H— =
0.7 10 1.00 134 [ o]
0K 1.04 1.00 1.57 Y Y SR
04 1.00 1.00 200
[T

~ 2h ma\ % "
KI = ovra o tan =% 1{a/b)
Ky =Ky =0

for L =0 use:

1
. -1 2b T L] ’
I\l = ovra - (!.m Y + (11 sin b )

Case 18
Single-cdge notch

K = av/ma falty

Ki“ K= 0

a/b fla/b) f(a/b)
0.1 1.18 1.14
0.2 1.20 1.19
0.3 1.29 1.29
04 1.37 1.37
0.5 1.5t 1.50
0.6 .08 1.66
07 1.9 i.87
08 2.4 22
0.9 246 244
1.Q 286 282

Case 16
Semtelliptical sustace crack in plate subject to genesal exiension

a
K‘ = b+ O.PZ(I —F)

N %
Lvre (-2—' lanﬂ)

Case 19
Round har in 1ension

K= 9., VD f(d/D)

with careuinferential K. = K =0

ack n 1]
4/D 1(d/D) d/D Hd/D)
0 0 470 240
0.t IRRA 0.75 0.237
0.2 0.155 (.80 0.233
0.3 0.185 .85 022§
04 .209 0N 0208
a5 0.227 0ms 0162
.6 0.238 197 0130
008 0.240 1 00 0

&, m 2
Case 20
K 0 Circular crack inan ¢
! infine hody subject // \\\
W, to wmilarat tension ~
T f LETR N —~
K = ——an o P ~ »
il 9, na 21 T P " {
* R o= 2 PR W
| T PN ~
where by s given by ~ St -
1 K. =K 0 . 7
w2 " i 1} ~. v
b1 —a? ? N
by = [ [ 3 sindg do Vo
. h? g
0
Case 17 Case 21 ~{”

T'wo equal cotinear cracks in an infinite sheet subject to umiform tension

At the near ends

h? ki _2
K = o/ms il
! lh’—;l’)%
h’M-u'

Kiy)
K||=T Vra X
(hz_uz’/z

At the tar ends

nﬂ(-—lﬂ E(u) )

u ukKi)
| E{u)

K. = rihf—-

n-r "h(u uK(ul)

a2\ %
where 4 = {1 - —h_z

£ and K are the complere elliptic integrals E(u) and
K(u) of the first und second kinds respectively.

Kl=

Elliptical crack i indinite
hody subject to unitorm
lension

For pomt on ciack cdge
determined by angle 8

7L

— 22 1
K = TV (\-m2 g+ — cos? H)
| i, h?
by " Ky 70
nf2

h? —y? L ]
—}::_.—— sin® ¢ do
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2.2
a/2c = 0.06
20 / a/2c = 0.10
{BASED ON TESTS OF 0.20-in.-THICK BASE METAL /
{TRANSVERSE GRAIN) AND WELD METAL
18f— AT -320°F AND 423°F)
i l ' ef2c=0.20
16— 4
My = — L a/2¢ = 0.30
1.1 \/-'-au [ ] /
. 7
14 ' 7 / / a/2c = 0.40
1.2 /
1.0 :
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s/t

FIGURE E2-7. M. CURVES FOR 5A1-2.5Sn (ELI) TITANIUM ALLOY

k

20

18

8/2¢ = 0.05,
{BASED ON TESTS OF 0.63-in.-THICK BASE METAL

18 (LONGITUDINAL GRAIN) AT 72°F, -320°F, AND -423°F.] 2¢=0.10

a/2¢ = 0.20|
s
/& /l/Zc =0,
1.2 .
/ 2¢ = 0.40
‘o M/ﬁ/‘ // J :
. ‘0 0.1 0.2 0.3 0.4 0.5 06 0.7 08 0.9

s/t

FIGURE E2-8. Mk CURVES FOR 2219-T87 ALUMINUM A LLOY
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For thick specimens, strain in the thickness direction is suppressed
considerably by the very thickness of the material and noticeably less plastic

flow is associated with the cracking process.

A laboratory plate specimen is seldom complctely in either plane stress
or plane strain but rather in some proportion of both. At the free surfaces of
the plate there are no transverse stresses to restrain plastic flow (2 condition
of plane stress). In contrast, at mid-thickness, plane-strain conditions prevail
and much less plastic flow occurs. A schematic representation of the crack-
tip plastic zone in a plate specimen is shown in Fig. E2-9.

The size of the plane stress SHADED AREA = CRACK SURFACE

plastic zone is thought to be related to
the amount of shear tip left at the
fracture surface. Thus, the appear-
ance of the fracture will vary accord-

ing to the proportions of plane stress

and plane strain conditions through the
thickness of the plate.

FIGURE E2-9. REPRESENTATION
OF PLASTICALLY DEFORMED
(and associated plasticity) on the frac- REGION AT A CRACK FRONT

ture toughness is illustrated in Fig.

The influence of stress state

E2-10, which shows the effect of plate thickness on the toughness and fracture
appearance. This figure shows that the larger thicknesses are characterized
by low values of toughness. This corresponds to a completely square (brittle-

appearing) fracture appearance.
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APPEARANCE OF
FRACTURE SURFACE

100 ¢
K
804 ¢
S w-b
-4
~ ‘0“. —— — — — i ——— S,
204
0 + + + -+ ~
' 0.2 0.4 0.6 08 1.0
THICKNESS (in.)

FIGURE E2-10. EFFECT OF PLATE THICKNESS ON FRACTURE
TOUGHNESS AND PHYSICAL APPEARANCE OF THE FRACTURE
A reduction in plate thickness decreascs the degree of plastic constriint

at the advancing crack tip. This enlarges the local plastic zone and conse-
qﬁently raises the fracture toughness. The development of a larger plastic
zoﬁe, in turn, relaxes the stress in the thickness direction, which further
decreases constraint. The process is sclf-accelerating and the fracture
toughness increases rapidly in a narrow range of thickness variation, as

shown in Fig. E2-10.

In the aerospace industry thicknesses of structures are usually thin
enough to fall in the region of plane stress behavior and as a result more

testing in this area is being done. Howcver, a determination of plane stress
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intensity factors is far more complicated than was first supposed and consider-
able research is needed. It is very hard to determine when unstable crack
propagation occurs because the unstable condition is approached very gradually

as crack length increases.

At present there is no direct method for translating laboratory data for
the mixed mode fracture condition to useful numbers for designing practical

hardware.
2.2.2.1 Through-the-Thickness Cracks.

In thin-walled structures, cracks may grow through the thickness
before catastrophic failure occurs or a through-the-thickness crack may
exist before any load is applied. The basic plane stress equation for through-

thickness cracks corrected for plastic zone in an infinitely wide plate is

? 2
c 1 "¢

K?!=0?|lnmn— + = —

c ¢ 2 20y2

~

where lc is the length of the through-thickness crack at failure (in.), o is
the stress normal to the plane of the crack at failure (ksi), oy is the yield

strength (ksi), and Kc is the critical plane-stress stress intensity (ksi N in.).

The critical plane stress intensity for a finite—-width panel containing

a through-thickness crack is

where w is the width of the panel (in.).
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2.2.3 Experimental Determination.

Among the most important recent progress in fracture mechanics is
the improved understanding of how the behavior of test specimens relates to
the design of structural components. Numerous tests have been performed on
a variety of specimen types, some of which are shown in Table E2-4. The
tests were designed to determine the specimén types, procedures, and data
analysis which result in KIc detcrminations that are independent of crack

and specimen geometry and manner of external loading.

At present no fracture mecchanics test is universally used to determine
ch values because no one test gives valid data for all materials; each of the
tests has its limitations. For instance, ASTM committce No. E-24 has been
working for several years to bring out a standard (E399-70T is proposed),

but this test may not be valid for low-strength, high-toughness materials.

Table E2-4 describes some types of fracture specimens, the data
obtained, and their uses and limitations. For dctailed information on these and
other specimens, how to set up and conduct the tests, what data to obtain, and

how to analyze data, see Refs. 1, 6, and 7.
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Seven Common Types of Fracture Specimens

Specimen

Loading

Data Obtained

Uses/Limitations

Uniaxial tension,
induced hending

Breaking stresses,

KIc

Double-Edge Crack

Uniaxial tension

Breaking stresses,

Ic

Cracks must be equal
in sizc

Central Through-Crack

Uniaxial tension
(static or eyclic)

Breaking stresscs, K

flaw growth rates,
h[c' lo' lc

Simulates penetration
flaw in hardware,
Kc is width dependent.,

~-D Uniaxial tension | Breaking stresses, Simulates bolts and
a=2 g (cyelic or static) KIc shafts, Difficult to
2 g or rotating form concentric
flexure fatigue precrack,
Round Bar Notched
o Tension with ch’ K[i Compact

Crackline-l,oaded Wedge
Opening, or Compact
Tension

induced bending

Uniaxial tension
(static or cyclic)

Breaking stresses,
flaw sizes, apparent

Simulates natural
flaws in hardware.
Difficult to analyze,

fe May not provide
valid ch values,
Partial-Thickness Crack ’
i 1 Three-point KIc Only standardized
[[: ' ' ":D loading test for Ky . Not
¥ ﬁt W ¥ applicable to most

ASTM Cracked Slow Bend

thin and tough
materials.
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2.3 FLAW GROWTH.

2.3.1 Sustained Load Flaw Growth.

One of the most serious structural problems that can arise in the aero-
space industry is the delayed time failure of pressure vessels caused by
sustained pressurization. In some cases, through-the-thickness cracks have
formed and the vessels leaked under sustained loading. In other cases, small
surfaces cracks or embedded flaws grew to critical sizes before growing through
the thickness of the shell. When this happens, complete catastrophic fracture
ensues. To predict such failures one must know the conditions under which
subcritical flaw growth can occur, as well as cither the actual initial flaw size
or the maximum possible initial flaw size in the vessel when it is placed into

service.

When the sustained stress flaw growth is environmentally induced, it

is often termed stress corrosion.

The surface-flawed or ""part-through' type of cracked specimen has
probably found the widest use in evaluating sustained stress flaw growth in
both "'thick- and thin-walled'" aerospace pressure vesscls. With this specim. ..,
the initial flaw closely simulates the type of flaws often encountered in service

and it can be oriented to suit the flaw growth characteristics desired.

A procedure for laboratory evaluation of sustained stress flaw growth
ﬁsing surface flawed specimens is schematically illustrated in Fig. E2-11.
The K, for the material is first cstablished from static ( pull) tests. Then,
using a batch of flawed specimens, ecach flawed specimen is loaded with differ-
ent initial loads (various fractions of K[c) and the time required for failure
observed, e.g., specimens 1 and 2, illustrated in Fig. E2-11. If failure does
not occur in a reasonable time (e.g., specimens 3 and 4), it is still possible
to obtain crack growth information by ""marking'' the crack front (applying

some low-stress fatigue cycles) and pulling the specimen apart.
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*=+> NO GROWTH, NO FAILURE |

LOG TIME

FIGURE E2.11, SCHEMATIC ILLUSTRATION OF A PROCEDURE
FOR LABORATORY EVALUATION OF SUSTAINED-STRESS FLAW
GROWTH USING SURFACE FIAWED SPECIMENS

A point is finally reached at which neither failure nor flaw growth
occurs. The highest level of K for which this condition occurs is called the
threshold stress intcnsity, KTH; or KIscc if due to stress corrosion

cracking.
2.3.1.1 Environmental Effects.

The discovery of a unique KTH

in relatively inert environments; hostile media can reduce the value to less

than half of K_ .
Ic

can be 80 percent of KIc or higher

Considerable evidence indicates that sustained load flaw growth is
most severe under conditions of plane strain with KTH values determined
from through-the-thickness cracked specimen tests increasing with a decrease

in specimen thickness.
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Studies of flaw growth and stress intensity in aggressive environments
indicate a monotonic relation between increasing stress intensity and growth
rate and design correlations have been determined for the critically important
materials, titanium, and high-strength steels. In these tests for KTH’ a
wide scatter, abnormally short times to failure, and very marked dependence

on environmental characteristics (media and temperature) are encountered.

During the past few years a considerable amount of sustained load
flaw growth data has been obtained on a number of different material-

environment combinations. A summary of some K information is given

TH
in Table E2-5.

2.3.2 Cyclic Load Flaw Growth.

Understanding crack propagation under cyclic loads is a basic requirc-
ment for the application of fracturce mechanics to the design of structures for
service life. Subcritical flaw-growth characteristics for various materials
are generally determined through the laboratory testing of flawed specimens.
These empirical data are then correlated to various crack-propagation theorics
which have been proposed. The following is a discussion of somc of the more

prominent theories,
2.3.2.1 Theorices.

A number of studies dealing with fatigue crack propagation have shown
that the stress intensity factor K is the most important variable affecting
fatigue crack growth rates. The availability of a master curve for a partic-
ular material relating fatigue crack-growth rate and range of stress-intensity
factor would enable a designer to predict growth rates for any cracked body

configuration.

Numerous '"laws'' of fatigue crack growth have been published during
the last 10 years. Basically, all the various equations that have been obtained

are simply the attempt of an individual investigator to obtain a curve that will
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Table E2-5. Typical Threshold Stress-Intensity Data for Various

Material-Environment Combinations

Typ. K
Temp, vs Typ Ky
Material (“F) (ksi) {ksi~in.) Fluid Environment Ken/Kpe
6A1-4V Titanium
Forging - STA R.T. 160 44 Methunol 0. 24
R.T. 160 44 Freon M. T, th, OH
R.T, 160 44 N0, (1. 30% NO) 0,74
R.T. 160 44 N0 (0,667 NO} 0, 84
R.T, 160 44 1,0 (distilled) + Na,CrO, 0. 862
R.T.. 160 44 H,0 (distilled) 0. k6
R.T. 160 44 Helium, Air, or GOX 0, 90
R.T. 160 44 Acrozine Gt 0, 82
R.71. 160 44 Freon T, 19, 0. BO
90 160 44 N.O, (0.:30% NO) 0.7
a0 160 14 N, (0, 60% NO) 0.75
1056 160 RE] Manomethyvihydrazing 0,75
110 160 41 Acrozine Ho 0.75
6A1-4V Titanium R.T. 126 o Mathanol 0.28
Weldments (Heat- R, T. 126 34 I'reon ML EF, 0.40
Affceted Zones) R.T. 126 39 H,0 (Distilled) O 86
n.T. 126 39 1.0 (Distilled) + Na,Cr0, 0. 82
5A1-2.5 8n (LLI) -320 180 64 LN, (o < Prop. Limit) ~0, 90
Titanium Plate =320 1H0 64 LN, {a ~ Prop, Limit) 0, 82
-423 216 52 L, ~0, 90
2219-TR7 Aluminum R.T, o8 36 Air 0. smf:
Plate -320 66 41 LN, 0, K2
-423 72 44 LH, NN
4330 Stecl R.T. 2005 90 Water 0,24
4340 Steel R, T, ~200 <60 Salt witer <0, 20
GTA Welds
18 Ni (200) Steel R.T, 200 130 Salt-water Spray ~0. 70
18 Ni (250) Steel R.T. 2145 0 Salt-water Spray (0, 70
12 Ni-5 CR-3 Mo Steel R,T. 170 156 Salt-water Spray ~0.70
9 Ni-4 Co-2, 5C Steel . T. 170 120 Sult-water Spray >0, 70
5 Ni-Cr-Mo Stecl R,T. 140 ~200 Salt~witer Spray
Inconel 718 R.T. 165 =130 Gascous Hydrogen at 5000 psig 0,25
2219-TH51 Aluminum R.T. 50 N.()y 0,70
Plate
2021-T851 Aluminum R.T. 65 30,5 N,O, 435
Plate

a, No failure K j ¢ some growth observed at lower values,

T
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best fit his data. Some have used curve_fitting techniques to obtain a high-
order polynominal to fit the data, others have used a statistics approach, and
still others have divided the data into regions and constructed straight lines

with different slopes in each region.

The choice between equations may be that of simplicity of cquation
versus accuracy of flaw-growth prediction given from the equation over the
range of interest. For example, an equation may be very simple and give good
results over a limited range of data, but out of this range the equation may be

quite inaccurate.

1. Paris.

Paris and Erdogan (Ref. 8), for example, argued that the growth rate
should be a function of the stress-intensity factor K on the grounds that this
factor defines the elastic stress ficld around the crack tip. They found that a

large body of data could be fitted by an expression of the form

- C(AK)n ’

where c¢ is a material constant, AK is the range of stress-intensity factor,

and n is an cxponent having a typical value of four for steel.

An example of Paris's equation for a typical steel is shown in Fig.
Eé-lz. On a log-log plot, the cquation becomes a straight line, The slope of
the line is four, which is the value of n. The constant ¢~ 5.6 X 10” % is
obtaincd by substitution of data into the Paris cquation and solving for c.
Separate values of the coefficients ¢ and n must be computed for each valuc

of R (load ratio) bccause Paris's cquation does not have R as a function.
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FIGURE E2-12. FATIGUE CRACK GROWTH RATE VERSUS STRESS-
INTENSITY FACTOR RANGE FFOR AISI 1045 STEEL
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1I. Foreman,

The Paris fourth-power crack growth rate equation was modified by
Foreman et al. (Ref. 9) to account for the observed behavior that crack growth
rates tend to increase rapidly toward an apparent instability as the maximum
applied stress intensity approaches the fracture toughness of the material.
Foreman also modified the Paris law to account for the observed behavior and
to explicitly express the effect of load ratio, R=K . /K . The Foreman

min’  max
expression for plane-stress conditions is

da _ c (AK)"
dN (1 ~R)KC-AK ’

where ¢ and n are constants dependent on material and test conditions.

AK = - i .
K (Kmax Kmin) during a load cycle

Kc = plane stress fracture toughness of the matcrial.

A comparison of Paris's and Foreman's cquations was made by Hudson
in Ref. 10 for 2024-T3 and 7075-T6 aluminum. It was found that the 7075-T6
data fell into an S shape or reflex type of curvature. A reflex curvature is
also obtained from Foreman's equation; it is induced by AK approaching
(1 - R) Kc in the denominator. This intrinsic shape is the primary reason
for the excellent fit of the data by using Foreman's equation. Paris's equation
does not provide for this reflex curvature; consequently, the equation cannot

fit the data at high or low growth rates as well as Foreman's equations.

The constant n in Foreman's equation is the slope of the curve in the

straight-line midrange and ¢ is determined from the substitution of data
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value into the equation. It should be notcd that n and ¢ will change, depend-

ing on the type of plot used. Generally, a log-log plot of AK in psi A in.

and da/dN in microinches/inch is used.

Foreman's equation for 2219-T87 is shown in Fig. E2-13 and some

typical values of ¢ and n for other common materials are given in Table

E2-6.

Table E2-6. Crack Propagation Coefficients for Foreman's Equation

da c (aK)"
dN (1 - R) K, - AK

da/dN in. /cycle

AK and K(_ psi N in.

Temp, KIC
Material (1) ¢ n Ipsi Nin
2219 -T87 R.T. 1.4x 10”1 2.5 | 33,000
300 1.5 x 10”1 2.47 | 31, 600

-320 9.0x 10 ¥ 2.7 | 36,200

TI-6A1-4V R.T. 7.8x 10”1 3.0 | 81,000
2024 T3 R.T. 3.22x 1071 | 3,38

7075-T6 R.T. 2.13x 10" ¥ | 3.21
517A(TI)

The solution of the Foreman equation can be formulated as an initial-
value problem and can be solved by direct numerical integration using the

Runge-Kutta method. For most practical problems, an initial crack sizc is
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known at an initial value of N, suchas N = 0. The problem is to determine
the crack length (or additionally the stress-intensity factor) after a given

number of cycles.
III. Tiffany.

An alternate approach to plane-strain flaw-growth rates has been
presented by Tiffany (Ref. 11). Tiffany noted that the cyclic lives of speci-
mens were primarily a function of the ratio of maximum initial stress intensity
applied to the flaw during the first loading cycle (Kli) to the plane-strain
fracture toughness of the material (KIC) . Accordingly, cyclic life data were
plotted on KIi/KIc versus cycles-to-failure graphs, where it was observed
that data for particular test conditions and material-cnvironment combinations
could be reasonably represented by a unique curve. Flaw-growth rates were
computed using the slopes of the cyclic life curves. Because the analysis
required knowledge of only the initial and final conditions for each test, the
Tiffany method was called an end-point analysis. The use of KIi/ch versus
cycles-to-failure curves for practical design problems is common in the
aerospace industry (Ref. 12). Figure E2-14 shows a KIi/KIc versus cycles-

to-failure curve for 2219-T87 at room temperature.
2.3.2.2 Crack Growth Retardation.

1. Wheeler's Retardation Parameter.

The retardation of crack growth is a phenomenon which occurs because
of varying load levels. Retardation has been shown to occur particularly after

a high level of load followed by a lower level of load.

Many papers have discussed crack growth retardation to some extent
but 2 computational technique has not been presented which is sufficiently

simple and accurate to gain widespread use (Ref. 13).
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Wheeler (Ref. 13) suggests that more accurate crack growth predictions
can be made by introducing a retardation parameter in the crack growth
equation, which serves to delay the crack growth after a high load application.

His equation for crack length is

ar = ao + Z Cplf(AKl) ,

where ar is the crack length after r load applications, a is the initial
o
crack length, Cpi is the retardation parameter at ith load, and AK, is
i
the change in the stress-intensity factor at ith load. The retardation param-

eter is taken in the following form:

C =1 , and a + R = a
p y P
where Ry is the extent of the current yield zone, ap - a is the distance
from crack tip to elastic-plastic interfacc (Fig. E2-15), and m is the shaping

exponent dependent upon material and test data.

This parameter has been used successfully to predict the growth of
cracks in specimens subjected to six different spectra, having three different
physical configurations, and made of two materials (Ref. 13). It is believed
that this approach represents a useful improvement on the idea of linear
cumulative crack growtl;, which can be used with confidence in design and

analysis.
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FIGURE E2-15. CRACK TIP YIELD ZONES

The computational scheme for incorporating this retardation parameter
in erack growth predictions requires that the crack be grown one load applica-
tion at a time, This amounts to a pieccewisc linearization of a highly nonlinear
process. The use of a high-speed digital computer is obviously required to
perform any realistic analysis. This technique has been incorporated into

the computer program CRACKS (sec¢ the Computer Utilization Manual) .

II.  The Significance of Fatigue Crack Closure.

Recent work by Elber (Refs. 14 and 15) has shown that fatigue cracks
in sheets of aluminum alloy close before all tensile load is removed. Significant
compressive stresses are transmitted across the crack at zero load. In pre-
vious work, usually the assumption has been madce implicitly that a crack is
closed under compressive loads and open under tensile loads. The deter-
mination of the crack closure stress must, therefore, be a necessary step in

the stress analysis of a cracked structure.
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Elber (Ref. 15) obtains an empirical relation for the crack opening
stress level and uses it as a basis for a crack propagation equation. The
analysis of qualitative experiments on variable amplitude loading shows that
the crack closure phenomenon could account for acceleration and retardation

effects in crack propagation.

Crack closure stress can be explained by the existence of a zone of
material behind the crack tip having residual tensile strains. In Fig. E2-16
a fatigue crack produced under constant amplitude loading is shown at three
crack lengths. Figure E2-16a shows
the crack tip surrounded by a plastic CRACK
zone as it is represented normally. SYMBOLIC FLASTIC ZONE
Figure E2-16b shows the crack at a
greater crack length surrounded by a
larger plastic zone because the stress
intensity is higher. The plastic zone
of Figure E2-16a has been retained
to show that the material had been
subjected previously to plastic defor-

mations. Figure E2-16c represents

the crack surrounded by the envelope

ENVELOPE OF ALL
of all zones which during crack growth PLASTIC ZONES

had been subjected to plastic defor-

FIGURE E2-16. DEVELOPMENT OF
A PLASTIC ZONE AROUND A

crack growth, residual tensile defor- FATIGUE CRACK

mations. During a single cycle of

mations are left in the material
behind the moving crack front, as only elastic recovery occurs after separation

of the surfaces.-
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Crack propagation can occur only during that portion of the loading
cycle in which the crack is fully open at the crack tip; therefore, in attempting
to analytically predict crack propagation rates, it scems reasonable that the
crack opening stress level should be used as a reference stress level from
which an effective stress range could be obtained. The cffective stress range

is defined there as

Aseff - Smax - Sop ’

where Sop is the crack opening stress.

An effective stress range ratio is then defined as

(s ) .é.seff

U =
;S AS

- S
max op
- 8 .

max mi

Constant amplitude loading tests were conducted to establish the
relationship between U’ and three variables which were anticipated to have
a significant effect on U, namely, stress-intensity range, crack length, and

stress ratio.

For the given range of testing conditions, only the stress ratio R is a
significant variable. The relation between U and R is linear and can be
expressed as

U= 0.5+ 0.4 R wherc -0.1<R<0.,7

for 2024-T3 aluminum alloy.
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One of the most important problems in aircraft structures is the inability
to predict accurately the rate of fatigue crack propagation under variable ampli-
tude loading. In attempts to calculate these crack rates on the basis of constant
amplitude data, interaction effects are usually ignored, leading to errors of

significant magnitude.

Crack closure may be a significant factor in causing these interaction
effects. This can be shown by the following example. Assume that a crack
in 2024-T3 aluminum is propagating under the conditions R= 0 and K =

max
20 MN/m3/2, Under these conditions the crack opening level is at K =

10 MN/m?/2, 1If the stress-intensity range suddenly is halved, the ne(\);vp con-
ditions are K g™ 10 MN/m3/2 and R=0. The crack opening level, how-
ever, is still at Kop = 10 MN/m®/? | equal to the new peak stress intensity,
so the crack does not open. Therefore, the crack dogs not propagate until
the crack opening level changes. The behavior of the crack opening stress

level under variable amplitude loading must therefore be investigated.

It has been observed that a crack will continue to grow for some time
after a high load application followed by loads of smaller magnitude. This has
been termed delayed retardation. Such retardation of crack grbwth after a
single high load can be explained by examining the behavior of the large plastic
zone left by the high-load cycle ahead of the crack tip. The elastic material
surrouhding this plastic zone acts like a clamp on this zone, causing the
compressive residual stresses. As long as this plastic zone is ahead of the
crack tip, this clamping action does not influence the crack opening. As the
crack propagates into the plastic zone, the clamping action will act on the
new fracture surfaces. This clamping action, which builds up as the crack
propagates into the plastic zone, requires a larger, externally applied stress
to open the crack; hence, the crack will propagate at a decreasing rate into

this zone and may come to a standstill.
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2.3.2.3 Transition from Partial-Thickness Cracks to Through-Thickness
Cracks.
It was shown in Section 2.2 that the stress intensity was different for
partial-thickness cracks and for through-the-thickness cracks. Also, for
through-the-thickness cracks, corrections must be made for a finite plate

within the stress intensity equation (Table E2-2, Case 13).

Often in crack propagation problems a crack will initially be a partial-
thickness crack and will grow until it extends through the thickness. When

this occurs, corrections in the stress_intensity expression must be made.

The transition from a surfacc flaw to a through crack is chosen to
be the point when the plastic zone reaches the back face of the material. The

value of a (crack length) for which this occurs is given as

2
- 1 Kmax
t 2m o

ys

2.3.3 Combined Cyclic and Sustained Flaw Growth.

Tiffany and Masters (Ref 1) hypothesized that below the sustained stress

threshold stress-intensity value (K, ), cyclic speed (or hold time at maximum

TH .
load) probably would not affect the cyclic flaw growth rate, but above K

TH
it could have a large cffect. In other words, the minimum cyclic life was
limited to the number of cycles required to increase the initial stress intensity
K[i to the KTH value, and above the KTH level, failurc could occur in
one additional cycle if the hold time were sufficiently long.

To date there is only a limited amount of experimental data to sub-
stantiate this prediction. However, the data do tend to support the original
Tiffany-Masters hypothesis of no significant cffect of cyclic specd on flaw

growth rates below the sustained stress threshold stress intensity.



