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5.0 INELASTIC EFFECTS,

In the preceding paragraphs, elastic behavior was assumed, This
assumption is sufficiently accurate for large classes of materials at relatively
low temperature and stress levels,

At higher temperature and for higher stress levels, however, the
divergence between the behavior of real solids and that of the ideal elastic
solid increases and the elastic idealization becomes inadequate; the behavior
of the real solid is then said to be inelastic. To predict the inelastic behavior
of a solid under given thermal and loading conditions, it is necessary to
generalize the stress-strain relationship. There are three types of approaches
to this generalization, although the borderlines between them are not well
defined.

1, The most basic studies of this problem make use of the concepts
and methods of solid-state physics. In this approach, the microstructure of
the material is taken into consideration and it is attempted to predict the
mechanical behavior of materials from this information,

2, It is also possible to disregard the microstructure of the material
and to regard it as a continuum; the general principles of mechanics and
thermodynamics as applied to continua are then used to determine the forms
of stress-strain relations which are compatible with these principles.,

3. The most direct procedure is to postnlate simple inelastic stress-

strain relations; these define various ideal inelastic bodies which, though not
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representing any actual materijals, nevertheless incorporate in simple com~
binations some of the different types of inelastic phenomena, such as creep,
relaxation, plastic flow, or work-hardening,

Although considerablce progress has been made in methods 1 and 2,
thus far only the third approach has yielded information of direct utility to
the stress analyst. In this paragraph, inelastic stress-strain relations are
discussed from the third of these viewpoints.

5.0.1 Creep.

Creep is the time-dependent deformation that occurs under stress.
Creep is normally observed by placing a constant load on a specimen and
measuring its deformation with time at a constant elevated temperature. The
curve showing the deformation as a function of time is known as a creep curve,
Creep curves ohtained for various materials, temperatures, and stresses have
certain common features, which are illustrated in Figure 5.0-1. These are:

1. From A to B, the specimen undergoes an initial, almost instan-
taneous, extension on loading.

2, From B to C, the specimen creeps at a rate that decreases with

.time (primary stage or transient creep).

3. From C to D, the specimen creeps at a rate that is nearly con-
stant (secondary stage or viscous creep).

4, From D to E, the specimen creeps at a rate that increases with
time (tertiary stage or accelerating creep).

5. At E, the specimen fractures.
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Figure 5.0-1. The idealized creep curve.

The rate of creep changes in the manner shown in Figure 5,0-2,
During the secondary stage, the rate of creep drops to a minimum value that
is approximately constant, as shown by the essentially straight line of the
curve (refer to Fig. 5.0-1).

The primary stage of creep is a work- or strain-hardening stage,
during which the resistance of the material to further creep is being built up
by virture of its own deformation. For this reason, the rate of creep continual-
ly decreases. The secondary stage of creep (C-D) represents a balance be-

tween strengthening by work-hardening and weakening by thermal softening.
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Figure 5.0-2. Variation in rate of creep with time,

The tertiary stage, or accelerating rate of .creep immediately before
fracture, is often caused by an increase in stress that accompanies the de-
crease in cross-sectional area of the specimen during creep under a constant
load., This decreaée in the load-carrying area may be due either to the
decrease of the diameter of the specimen as it elongates or to the formation
of intercrystalline cracks. These cracks can also act as stress-raisers., In
other cases, the accelerating creep rate is due to a change in the metallurgical
structure, such as récrystallization.
5.0.1.1 Design Curves.

For engineering purposes, the results of tests at various stresses and

temperatures are summarized in more convenient form, Figure 5.0-3 shows
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a plot that is most useful when the temperature and the lifetime of a part are
fixed by the conditions of operation, and an allowable stress must be determined
so that the part will not fracture or deform more than a certain amount during
serﬁce. Having a set of these curves at the proper temperature, the designer
can set off the lifetime along the abscissa and project it upwards; the intersec-
tion of this vertical line with the proper curve then determines the maximum
allowable stress, and the design stress will be this quantity less a suitable
factor of safety. Timc and stress are usually plotted on logarithmic scales,
where stress is the load divided by the original cross-sectional area. Fre-
quently the data points on the rupture curves are identified with a number that
gives the percent elongation, or reduction in area, at fracture; thus, some
measurement of the ductility of the material is provided.

When the requirements are simply that a part must not fracture in
service, and there are no limits on the amount of tolerable defonnatidn, only
the rupture curve in Figure 5.0-3 is needed, In such cases, the rupture curves
for a number of temperaturcs can be collected on a single diagram, as in
Figure 5,0-4. which is usually known as a "'stress-rupture diagram.™ These
curves show the variation in the time to fracture as a function of stress at
several constant temperatures, and they are used in the same manner as the
curves in Figure 5,0-3.

There are various ways of croas-plotting the previous figures. Plots

of the streas versus tempemture for lines of constant rupture life or constant
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Figure 5.0-3. Schematic presentation of creep-rupture data showing effect
of stress at constant temperature on the time to rupture or specific
amounts of strain,
minimum creep rate are common. These curves are sometimes plotted on
the same diagram with curves showing results from short-time tensile tests,
as in Figure 5.0-5. Such diagrams give complete descriptions of the mechan-
ical behavior over wide temperature ranges. At low temperatures, where
creep is unimportant, designs are based on the results of short-time tensile
tests; at higher temperatures, where the creep~rupture strength curves are
below the tensile test curves, designs must be based on the creep-rupture
behavior.

Curves of this type are readily available for most common metals in

MIL-HDBK -5 [41].
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Figure 5.0-4. Schematic presentation of creep-rupture data showing
effect of stress on the time to rupture at various temperatures.
5.0.1.2 Stress Relaxation,

Creep assumes a constant force; if, on the other hand, a bar is sub-
jected to a constant elongation and the temperature is raised to a high level,
with the elongation being maintained constant, the force required to produce
this elongation will be observed to decreése continuously with time (Fig.
5.0-6). This mode of inelastic behavior is known as stress relaxation.

An important characteristic of both creep and stress relaxation is
that time is required for their action. Thus, it may be expected that effects

of this type will be unimportant for processes of relatively short duration.
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Figure 5.0-5. Schematic presentation of tensile and
creep-rupture properties.
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Figure 5.0-6. Stress rclaxation under constant deformation.

5.0.2 Viscoelasticity.

Often, idealized bodies are defined which exhibit the characteriatics of
creep and stress relaxation. These idealized bodies take the form of simple
mechanical models composed of springs and dashpots, whose deformation
defines the stress-strain relationship for the given material. This approach
is called viscoelasticity.

To represent the creep behavior of a material, many various mechanical
models can be formuldated composed of different combinations of springs and
dashpots. Some of the more common ones can be found in Refs. 1 and 42,

5.0.3 Creep Buckling.

Consider a column under a constant axial compressive load; if the
column is not perfectly straight initially (as is always the case because of

unavoidable manufacturing inaccuracle), then some bending will occur, The
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bending stresses are accompanicd by a certain strain rate, which implies
increasing deflections; these in turn cause higher stresses so that a sclf-
émited or unstable situstion ariscs, This process leads to collapse at a
finite critical time and is known as creep huckling.

The following observations apply to creep buckling (Ref, 1):

1. The phenomenon of creep buckling is, both physically and mathe-
mgtically. quite different from the usual type of buckling phenomenon, The
ul@ buckling load represents a "point of bifurcation' on a load versus
&hection plot, a point beyond which more than one equilibrium configuraiion
is ;)ossiblc; ereep buckling is characterized by deflections increasing beyond
all bounds.

2. Mathematically, creep buckling can occur at a finite time only if
the material follows a nonlinear creep law,

3. The column will undergo creep buckling at any value of the com~
pressive axial load, no matter how small.

4. Creep buckling will occur whenever the column has initial imper-
fections, and only then,

5. The value of tcr depends on the initial deflection and on the
magnitude of the load; it has been found to be not too strongly affected by
changes in the former but very sensitive to changes in the latter.

6. The small-deflection analysis is, of course, not valid in the

immediate neighborhood of the critical time because the deflections are then
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large. However, calculations based on a small-deflection theory ave valid

up to times very close to the critical; they thus cover, in effect, the entire

range of practical interest.

5.0.3.1 Column of Idealized H-Cross Section,

The critical time for creep buckling to occur for a simply supported

column of idealized H~cross section [two concentrated flanges, of area (A/2)

cach, at a distance h apart] is given by:

- , N
tcr‘-— k log [] ; (11‘2' )J

where

e Lo (Zh)* [ray

24 L P ’
0

L = length of column ,

P, = column load,

a, = maximum value of initial imperfection,
and

A = constant in the strain-stress relationship.

d _ (&
da A )
5.0,3,2 Rectangular Column,

Analysis of the critical buckling time for rectangular columns is very

difficult. A way of circumventing this difficulty has been established, whereby
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upper and lower bounds for the critical time arc obtained (t:r) and are so
designatcd by the use of un asterisk,
For a column with u rectangular cross section of height h and width
b, subjected to an average stress o , = P,/bh and obeying a stress-strain
law of
L .
E=(¢/E)=(a/\) ,
upper and lower bounds for the nondimenstonal critical time % are plotted
in Figure 5.0-7 againat the ratio (z,/h) of the initial center-deftection to the

height of the bar, For small values of this ratio (say z,/h < 0,015) these

bounds may be determined from the asymptotic expression

.t’(*:r=log —:_0 -
with the values of the cocfficient ¢ listed in Table 5,0-1.
The spread betwecn the bounds may be seen from Figure 5.0-7 to vary
with the ratio z,/h. However, from Ref, 1, {f 0 o/0 g 0. 8, then the lower

bound will be a good approximation for b whereas if ¢ o/o E< 0.2, the

upper bound on tgr will he a good approximation to the actual value of the

.

)2
critical time, ( op= Euler buckling stress = %%r) .
5.0.3.3 Flat Plates and Shells of Revolution.
The method presented here may be used to predict critical conditions
for the creep buckling of flat plates and shells of revolution which satisfy the

following requirements:
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TABLE 5.0-1. VALUES OF C

n For Lower Bound For Upper Bound
3 0,987 0.26
4 1.57 0. 56
5 1. 95 0. 81
6 | 2.26 1,02
7 2.45 1.16
6.0
n=3
50T~ \/— == ==~ UPPER BOUND ON t
~ ~ ~/,n=5
N LOWER BOUND ON t_,

0.006 0.01 0.02 004 0.06 0.10 0,20

r Io“

Figure 5.0-7. Upper and lower bounds for the critical time f:c1 for

creep buckling of a rectangular column,
1. The member is made of an isotropic materiat.
2. The stress intensity o; [see equations (1)] is uniform throughout

the structure.
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3. The configuration, boundary conditions, and type of loading are
such that appropriate formulas are available for room-temperature values of
both the critical streas intensity o i [ see equations (1)] and the plasticity re-
duction factor,

Temperature Distribution,

It is assumed that the member is at a uniform elevated temperature.
Method.

The method presented here is essentially that which was published by
Gerard in Ref. 43 and constitutes a classical stability approach based on the
concepts set forth by Rabotnov and Shesterikov [44). In Ref, 45, Jahsman and
Field show comparisons of various theoretical predictions with column test
data. The theory attributed there to Gerard is that of Ref. 46, which was
published hefore Ref, 43 and has a diffcrent basis, On the other hand, the
curves which Jahsman and Ficld [45] identify with the Rabotnov-Shesterikov
label were developed from the method given in this paragraph. The afore-
mentioned comparisons seem to indicate that this technique will give con-
lervati\fe predictions, However, this conclusion could possibly be because:

1, The test data were corrected to eliminate the effects of initial

imperfections.

2, The analysis i8 concerned with the onset of instability, whereas

the experimental data are for final collapse.
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The presentation by Jahsman and Field includes plots obtained from each of three
different theoretical approaches [43, 46, 47). Of these, the approach of Ref.
43 gave the most conservative predictions, This is a desirable situation in
view of the uncertainties associated with classical stability approaches to
creep buckling problems. ¥For one thing, this general theoretical concept ignores
the detrimental effects from initial imperfections. However, to properly account
for this influence, much more complicated methods would be required and these
would not fall within the intended scope of this handbook, Therefore, in the
procedure recommended below, an attempt is made at least to partially account
for the imperfection effects in shells of revolution, This is done by the intro-

duction of available room-temperature knockdown factors.

Recommended Procedure.

Obtain from the literature, or a suitable test program, a family of
creep curves for specimens made of the desired material and subjected to
unaxial loading while at the appropriate service temperature. These curves
should he of the type shown in Figure 5.0-8 where o and € are the stress
intensity and strain intensity, respectively, and are defined as follows for

plane-stress conditions:

1/2
ag, = (0'2 + 02 - o 6 +3r® )
1 X y X y Xy

~ and 1/2 (1)

2

y

2 |2, 2 Txy
€©= 735 (ex+€y+exey+ y
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Using data obtained from these plots, create a family of curves similar to
those of Figure 5.0~-9 where e'i is the strain-rate intensity defined as follows
for a state of plane stress:

+2 \1/2
= -.2.— 2 +2 ps € Z& 2
= Ex+€y +€x y+ 4 . ( )

The dots indicate differentiation with respect to time; for example,

)
€x = 3t . (3)

The results embodied in Figure 5.0-9 are then used to develop still another

family, which is illustrated in Figure 5.0-10. Following this, select appro-
priate formulations for conventional room-temperature values of both the

critical stress intensity (oi) and the plasticity reduction factor n. For
cr

example, in the case of an axially compressed, moderate-length, circular

cylinder, one obtains

(0'1) =n I Eh ' (4)
cr RN 3(1 - %)
and
1/2
1- v: Et Es
=T & (8)

where I is the room-temperature knockdown factor and

. E
- £ -
v=0.50 - & {0.50 ve) . (6)
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T = CONSTANT

Figure 5,0-8, Constant-load creep curvés.

T = CONSTANT

LOG SCALE

LOG SCALE

Figure 5.0-~9., Curves derived from Figure 5,0-8.
Values for ' may be obtained from Ref. 48 or other suitable sources,
In addition, use the short-time elevated-temperature values for E and Vo
On the other hand, the tangent and scant moduli (E ¢ and ES, respectively) are

those associated with the curves illustrated in Figure 5.0-10. Therefore,
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Figure 5.0-10, Curves derived from Figure 5.0-9.
working with this figure, proceed from left to right along the A line cor-
responding to the applied load and use a trial-and-error procedure to determine

the strain intensity § at which

Eh

. 7
R\‘a(l-v"'e). "

“applledo, =n T’

i

Following this, return to Figure 5,0-8 and establish the time t as-

sociated with this combination of ¢ { and ¢ i This is the predicted time to the

!

onset of creep buckling and can be denoted as tcr'

Although the preceding presentation has dealt with the specific case of
an axially compreased circular cylinder, it should be obvious that this method .
constitutes a general approach which can be used for the analysis of creep
buckling in various types of plates and shells subjected to an assortment of

loading conditions. It should be noted, however, that I" = 1.0 for flat plates

(and columns).



