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4.0 THERMOELASTIC STABILITY,

The thermoelastic problems considered in the previous paragraphs
have followed formulations of the linear theory of thermoelasticity; they have
thus excluded questions of buckling, problems in which the effect of the loading
depends‘on ﬁxe deformations (as in the case of beam-columns), large deflec-
tions, and other similar effects. It is the purpose of this paragraph to discuss
some of the principal problems of this type. It should be remembered that
the solutions are approximate from the viewpoint of an exact thermoelastic
formulation. The nature of these approximations was treated in the previous
subsections.,

4.0.1 Heated Beam Columns.

If a beam-column is subjected to the action of heat, the influence of
temperature must, in general, be taken into account. The analysis in the
cases in which the ends of the beam are restrained in the axial direction is
slightly different from that used when the ends are free to displace in that
direction, The latter case will be considered in paragraph 4.0.1.1 while the
former is considered in paragraph 4.0,1.2,
4.0,1,1 Ends Axially Unrestrained.

The buckling behavior of beams (and therefore also their behavior as
beam-columns under any combination of transverse and axial loads) depends
- on the shape of the cross section: For example, a beam whose cross section

possesses no axes of symmetry can buckle only by a combination of twisting
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and bending, whereas in other cascs some of the uncoupled modes are also
possible. The general [ormulation and solution of this problem are discussed
in Ref. 1, hut for simplicity, the followlng analysis is restricted to doubly
symmetrical beams, with least principal moment of inertia under a transverse
distributed load p = p(x) acting in the xy plane, and subjecteci to a tempera-

ture distribution such that M, = 0. The beam will thus bend in the xy plane

T
Yy
without twisting and with w = 0. The governing differential equation is
d*M
2 2 2 T
d K déy P op doy ) 7 (1)
ax? Tz dx? a1 dx? *

It is convenient to obtain the solution in two parts, by separating the effects of

temperature and of transverse load. For this purpose Vi is the deflection the

beam would undei'go if only temperature and the axial load P were present

(transverse loads absent); it therefore satisfies the differential equation

2
" d?v,l, dv, v d MTz
] ) - - - . ]
:J:(T ‘lz dx? o dx* dx? (2)

The quantity Vp is the deflection the beam would undergo if only transversc

loads and the axial load' P were present (temperature effects omitted); it

therefore satisfies the differential equation

2 2
42 . dvp) b dvP i @
daxt z ax dx? P
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With the definitions, the solutions of the combined problem in which all loads
are acting is

= + -
v VT VP

The component deflection v, represents the solution of the ordinary

p

‘isothermal beam-column problem and can often be found in the literature (sce

‘Section B4.4). The determination of VT must, in general, be carried out

anew for each new problem. However, in the special case of uniform beam
under a temperature distribution of the form of a polynomial of a degreec not

higher than the third in the spanwise direction, that is, when

M, =ag+ax+ax+ax’ |
Z
then
M
T
Vps T T +Cy+ X + ¢y sin kx + ¢ cos kx
P .
where k = [ To= and the constants ¢, ¢y, ¢y, and ¢, are determined
Z

from the boundary conditions. Solutions for Vip for three important special

examples for which

M = A5+ 44X
T 0 |
L Z

are given as follows,
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I. Both Ends Fixed.
¥
. _ , p
P 1 : } — —
-y .S .
i L " |
| [ 4
. 4l I:‘,Iz
VT=Of0rP<pcr=T .
II. Both Ends Simply Supported.
Y
F é, 3
! L 1
{ |
a KL - 1 ' a
e -0 [CO8KL-1 - 3 [,y sinkx
VT P ( oin KL sinkx+1 - cos kx) P x-L in kL
and
TEI
P = —p—
cr L *
" I, Cantilever.
t
=k -
L L J
| - -
a; 1 -coskx a kL - sin kKL
vT--- P P - Tk [( py— ) (l-coskx)-l-kx—sinkx]
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7t EI
P = ———y—
cr 4L *

The axial stress is given by

PT-P ¥
oxx=—aET+ yy +I (MT +MZ+PV) .

In these analyses, the beam-column has been assumed to carry a compressive
axial load. If the load is tensile, the appropriate results may be obtained by
replacing the quantity P by (-P) in the corresponding expressions valid for

a compressive load: accordingly, the quantity (k) must be replaced by (ik),
(k?) by (-K?), (sin kx) by (i sinh kx), (cos kx) by (cosh kx), (tan kx)

by (i tanh kx), etc. Herei =~ -1 and the symbol k denotes

- [

EIz
4,0.1.2 Ends Axially Restrained,

In this case, the basic equation to be solved is still equation (1) of
4.0.1,1, but the magnitude of the load P is unknown and must be determined
from an additional condition concerning the axial displacements of the ends.

If both ends are rigidly fixed in the axial direction, these conditions shall be
stipulated: The axial distance between the ends of the bar must remain
unchanged and temperatures must remain constant along the span. Expressed

mathematically,
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L
(P-Pp) 5 +A=0 (4)
where
L 2
1 dv
A=-2-{ (Ex‘) d . (5)

The analogous condition appropriate to the case in which the ends of the
bar are elastically restrained in the axial direction is easily derived. If, for
example, the ends are attached to linear springs with modulus K, equation (4)

takes the form

p(1+%)-pT]—ALE-+A=o . (6)

The transverse deflection v appearing in the quantity A must be
calculated by the equations given in the preceding paragraph (4.0.1.1);as a
consequence, the analysis of beam—columns which have ends fixed in the axial
direction is quite cumbersome, since the unknown P and v must be deter-
mined by the simultaneous solution of equations (1) and (6). However, if the
temperature is expressed as a polynomial, the calculations are greatly facil-
itated by the use of a series of graphs in conjunction with a rapidly convergent
fteration procedure, This technique and its results are available in Ref, 7
within the following limits:

1, Distributed transverse loads are uniform over the span, whereas

concentrated loads are at the midspan,
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2. The temperature varies linearly through the depth and is constant
in a spanwise direction,

3. The beam is assumed to be simply supported at its ends for
bending and elastically restrained axially.

Tables of numerical results in nondimensional form are presented for
the cages of zero and full axial end restraint in rectangular beams, These
tables may be used to determine maximum deflections and bending moments.

4,0.2 Thermal Buckling of Plates.

4.0.2.1 Circular Plates.
General.

This section contains curves and data based on nonlinear, elastic be-
havior and involving the use of large-deflection theory. This is because plate
stresses and deflections in the post-buckled state represent the major
considerations. The basis for this is the well-known fact that certain com-
pression structures can support some increment of additional loading before
complete collapse and, in the process of so doing, accept increased stresses
and deflections. This can be readily seen by an inspection of the plate buckling
stress and allowable compression stress for specific materials, taken as a
function of the crippling parameter (a/tm . Particular considerations and
background, as developed by Newman and Forray in Refs. 32 and 33, are given
in the following paragraphs, along with the solution of an example problem for

demonstration of the methods involved.
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Confjpration.

The design curves and equations provided here apply only to flat,
circular plates which are of constant thickness and are made of an isotropic
material. It is assumed that the plate is free of holes, obeys Hooke's law,
and thai Poisson's ratio is equal to 0. 3.

Boundary Conditions.

The solution is valid only where both of the following conditions are
satisfied:
i. The boundary is simple supported; that is,

w=Mr=0atr=b . (7)

2. The middle surface of the plate is radially fixed; that is,
u=v=0at r=b . (8)

Temperature Distribution.

The plate may have a thermal gradient through the thickness, provided
that the distribution is symmetrical about the middle surface. However, it is
required that the temperature be uniform over the surface, Therefore, the
permissible distributions can be expressed in the form

T = T(2) (9)
subject to the restriction that

T(+z) =T(-z) . (10)
Obviously, the special case of a plate at uniform temperature complies with

these specifications,
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Design Curves and Equations,

If a heated plate is constrained against free, in-plane expansion, com-
pressive stresses are developed in the plate. Initial out-of-plane buckling
occurs at very low temperature increments in the case of thin plates con-
strained in this manner. However, in many structural situations, the useful-
ness of the plate is not completely lost as a result of this initial buckling since
it is able to carry some additional load after it has reached the buckled state.
In view of this, cases may arise in which a knowledge of the magnitudes of the
post-buckled stresses and deflections would be most helpful. To determine
the stresses and deflections of a plate after initial buckling has occurred,
large deflection theory must be used in the analysis since the actual deflection
at that stage may be several times the thickness of the plate.

In Ref, 33 Newman and Forray present a large-deflection analysis of a
circular plate under mechanical and thermal loading. Since a closed-form
solution of the basic differential equations was not possible, they used a finite-
difference procedure to set up the governing differential equations for digital
computer solution. Numerical results were then obtained for a wide range of
temperature resultants, NT' . These results are presented in curve form in
Figures 4, 0-1 through 4, 0-5 for deflections, radial and tangential forces, and
moments for various temperature gradients, as defined in equations (9), (10),

and (16).
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Figure 4.0-1., Nondimensional deflection parameter,

Even though nonlinear analysis methods are used to find the post-
buckling deflections and stresses, these solutions hold since it has been shown
in Ref, 34 that initial buckling can occur when the edge compressive stress
exceeds the lowest eigenvalue of the small deflection buckling problem.
Timoshenko [ 35] shows that this critical compressive stress for & circular

plate with » = 0.3 is given by
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: Dy
(or) = (2.05) % . (11)

cr

For the thermal problem, the compressive stress just before buckling is

given by
-N
7T t-v) (12)
where
t/2
N.=Ea [ Tdz . (13)
-t/2

From equations (11) and (12), the critical nondimensional value for NT at
buckling is given by

b?
' = — =
(NT) = (NT) 5 2,94 . (14)
cr cr b

Equation (14) shows that initial buckling of the plate will occur when

N_' = 2,94, provided that v = 0,3. Hence, when N

T T' < 2.94, the plate will

remain flat and the deflection w, as well as the bending moments Mr and M o°

must equal zero. An inspection of equations (17) and (18) together with
Figures 4.0-4 and 4.0-5 reveals that this requirement is essentially satisfied
by the given method.

The deflection pattern of the buckled plate will consist of an axisym-
metric bulge which can occur in either the upward or downward direction,

In actual practice, the direction will be determined by the type of initial
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imperfections present in the plate, the nature of external disturbances, etc.
The formulas and design curves associated with the deflections and the bending
moments are based on the assumption that the plate deflects downward, On
the other hand, the sense of the membrane forces (compressive versus tensile)
at any point will be independent of the bulge direction. Hence, the expressions
for Nr and N PE taken in conjunction with Figures 4,0-2 and 4.0-3, are valid
for both types of deformation.

It is assumed that Young's modulus and Poisson's ratio are unaffected
by temperature variations. On the other hand, the temperature-dependence of
the thermal-expansion coefficient can be accounted for by recognizing that it
is the product aT which governs; that is, the actual temperature distribution
can be suitably modified to compensate for variations in o .

It should be noted that there is a typographical error in equation (5)
of Ref. 32 where the quantity (1 - v)? should be changed to (1 = v?). The

contents of this section have been corrected accordingly.

Example Problems,

For the first example problem, consider a circular steel plate which
*i{s 0.10 in. in thickness and has an outer radius a of 10.0 in. The outer
edges are fully restrained against in-plane expansion; howevei', they are
simply supported otherWise. The plate is heated such that the temperature
gradient is given' by | | |

T=3.0+60(z/t) .
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Using @ =6.0x 10~%in./(in.) (*F), v = 0.30, and E = 30.0 x 10f psi,
determine whether buckling has occurred and find the stresses and deflections.
From equations (16)
t/2
—u2) B
N '=£Lu’!-)—b—f:a f [3.0+6.0(z/t)2] dz .
T Et /2

_12(1.0-0.09) (10.0)?
T  (30.0x 10° (0.10°)

2 t/2
5.0 + S22
-t/2

t ot 2.0 (3 ¢
NT' 6.55 [3.0(—2- -2"') + sz- (—8— + -g-)] = 6.55(3.5)(t) ,

(30.0 x 10%) (6.0 x 107%)

and

' =
NT 2,29 .

Since this is less than the critical buckling value given by equation (14), the
plate has not buckled and thus the deflection, as well as the bending moments

Mr and M 0’ are equal to zero,

However, from an inspection of equations (17) for the stresses and

knowing that, for NT' = 2.29, Mr‘ = Me‘ = 0 and the values of N_' and 11'8' can

be obtained from Figures 4.0-2 and 4,0-3 as a function of (r/b), the strcsses
may be easily calculated by inserting the appropriate values in the equations,

For a second example use the same plate as for the first; however,
apply a temperature gradient to the plate as follows:

T = 33.0 + 66.0(z/t)? .
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For this thermal loading

NT' = 6,55 [33.0(t) + 5.5(t)] = 6.55(38.5)(0.10) = 25.2 ,

Since this is greater than the critical buckling value of 2.94, as given in
equation (15), the plate has buckled, Then, using Figures 4.0-1 through
4.0-5 the deﬂéctions, stress resullants and moments may be obtained for the

calculated value of N,I,' . These valucs may then be substituted into cquations

(17) to obtain the stresses and deflections, For this problem assume that the
stresses and deflections are needed for values of (r/b) = 0.3 and = 0.6. Then,

on the basis of N,_' = 25.2, the following table gives values for the terms

T
néeded in the stress and deflection calculations.
L 4 ‘ 1 t ] 1
w Nr NO Mr MG
00 30 1. 75 1.40 "1- 20 -12- 70 "120:}0
0. 60 1.20 -1, 70 -10,00 -12.00 -12.40

Setting up cquations (17) for calculation of the stresses and deflections for this
problem,

w=w'(t) = 0.10(w")

and
~12z (Mr') (NT') b2 Db
e B e O B (F)ers oo | g

Letting z = t/2; T = [33.0 + 66.0(0.5)% = 49.5 ,
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D . o 3
b _ 30,0 x 10° x (0.10) = 2750.0
Bk - 12(1.0 - 0.09) (10.0)F (0.10) 0.
Then,
- ]
12(0.5t)(Mr ) 25.2
o _=2750.0 (1.0 - 0.3)
t~ 6(1.0 - 0,09) ‘ *
2
- 12(1.0 + 0,3) M) (6.0x10"* (49.5) + (N_')
* * 0.10 * r
o =1- 17060 (M_') +99 000 - 127 320 + 3750 (Nr' n o, 1
and
o = [-7060(Mr') + 2750 (Nr') - 28320 .
Also,

o, = [-7060 (Mo') + 2750 (No') - 28 3201 .

Then, for (r/b) = 0,30,
w=0.10 (w') =0.10 (1,75) = 0,175 in,
and

o = - 7060 (-12.70) + 2750 (1.40) - 28 320

=+ 80 660 + 3850 - 28 320 =+ 65190 psi .
Similarly,

o=+ 55 220 psi (Note that these are tension stresses. )

for (r/b) = 0.60 .
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As before,
w= 0.120 in,,
Ur =+ 51 720 psi,
and
0'8 =+ 31 720 psi' .
The previously calculated stresses represent the critical tension values.
Critlcla.l compression stresses are found by letting z = - t/2 in the first stress
term, Then
o = [ 7060 (Mr') + 2750 (Nr') - 28 320]
and
7, = [ 7060 (Me') +21750 (Ne') - 283201 .
The following table gives the critical tensile. and compressive stresses and

deflections at the plate stations,

w Tensile Stress (psi) | Compressive Stress (psi)
(r/b) (in.) o o, . T,
0.30 0.175 +65 190 +55 220 -114 130 ~118 460
0. 60 0.125 +51 720 +31 720 -117 720 ~143 360

Summary of Equations and Curves.

Critical Condition for Buckling.

(N') = (2.94) | (15)
cr v=0.3 :

where
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N, b* 1/2 . )
. IG:!( [ uz) (=)

N '
r l) .
b ~t/2

(16)

’

Et
D =
b 12(1 - )

and
t/2
N =Ea [ Tdz

T e
Postbuckling Deflections and Stresses.
w=w't

12zM ! N, o2 D,
| -12(1+v) 3 aT+ N #

(17)

and
' 12zM , N,' b, D

] e

- 12(1 + v) ?—aT-kNe o7

where
M b?
M'= - —— Je(1-13)
r Dt
b
(18)
Mob2
M0'=-—B—t—*J(i(l-u2) ,
b
Nrbz
N'= ,
r Db
and
2
NBb
N '= .
D



Section D
July 1, 1972
Page 222

The values for w', Mr' , M 0' . Nr' , and No' are obtained from Figures

4, 0-1 through 4, 0-5 for the case of v = 0,3,

For values of v other than 0.3, the values of Mr' and MG' may be

found by using equations (18) as shown:

Yy _ ) (1 i sz _— ,’ *
(Mr )v— [(Mr I)J= 0-3] (1.0-0.3%) ~ oo Vz)(Mr )11--0.3 .
Similarly,
(MB')V= 1,049 N (1 -2 (Me') .

v=0,3

Nr' and No' ‘are independent of v,

4,0.2,2 Rectangular Plates

I. Heated Plates Loaded in Plane — Edges Unrestrained in the Plane,

Consider the plate strip, shown on the following page, loaded at the
ends by a uniformly distributed stress o, , subjected to a uniformly distributed
heat input Q, and reinforced along the edges (y = 0, y = b) by longitudinals.

The temperature in the plate will be higher in the center of the panel than near

the edges because of the heat sink provided by the longitudinals. For the

present purposes the temperature will be taken to be uniform across the

thickness and of the form

T=T,-T, cos (i—g-l) | (19)
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in the plane of the plate, where T, and T, are constants to be adjusted to fit

the available data.

0o

TR
-2
HﬂLHHf

——
o
[=]

The following solution pertains to a single panel of the strip, extending
from x = 0 to x= a, This panel is assumed to be at a sufficient distance from
the ends of the strip, so that the stresses may be taken to be independent of
X, Transverse displacements are prevented at x = 0, a,

From the solution in Ref. 1 the critical combination of 7, and 'I‘l
(note: T, has no effect on buckliﬁg) is found by obtaining the determinant of
simultaneous equations. It was shown that the symmetric case corresponds
to the lower buckling load and that the problem can be solved approximately
by the interaction of two special cases. These cases are (1) T;=0and g,
is acting alone and (2) o ,= 0 and T is acting alone.

The solution to (1) is the standard plate buckling expression found in

Ref, 1; that is, when T = 0,
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_ kmE_ [/t \?
Yer™ TS () (20
where
k=4for = = 1
and
b a\? a _
k-—(a+b) forb—l .
The solution to (2) when o, = 0 is as follows. The critical value of
T1 (= Tcro)‘ .

a ET k mE 2
= -3 ()

2 T 12(1-0%9) \b (21)

where k, is determined from Figure 4.0-6.

12

\\ )4
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%y
\‘0
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2
b

Figure 4.0-8, Values of the coefficient k.
Then, for the general case in which both heat and edge stresses are

acting, the following interaction curve is used:
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cr T er
T + = =1 . (22)
cry cry

IL Heated Plates Loaded in Plane — Edges Restrained in the Plane,

A. Configuration,

The design curves presented here apply only to flat, rectangular plates
which are of constant thickness and are made of isotropic material, It is
assumed that the plste is free of holes and that no stresses exceed the elastic
limit. The edge support members must have the same coefficient of thermal
expansion as the plate proper. The design curves cover aspect ratios a/b
from 1 througﬁ 4. However, since thesc plots become quite flat at a/b = 4,
they must be used to oblain approximate results for aspect ratios greater than
4.

B. DBoundary Conditions.

Solutions arc given for cach of the following two types of boundary
conditions:

1, Type I ~ The boundaries satisfy both the following conditions:

a. All edges of the plate are simply supported.

b. Th(g cdge supports fully restrain in-plane plate displacements
such that these displacements are equal to the free thermal expansions (or
contractions) of the supports.

2. Type II — The boundaries satisfy both of the following conditions:

a, All edges of the plate are clamped,
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b. The supports fully restrain in-plane edge displacgments of the
plate such that these displacements are equal to the free thermal expansions
- (or contractfons) of the supports.
C. Temperature Distribution.
It is agsumed fhat no thermal gradients exist through the plate thickness.
The following three types of temperature distributions over the surface are
considered and are illustrated in Figure 4, 0-7:

1. Sinusoidal distributions which can be expressed mathematically as

mX
T=T_ +T sin"sin & . - (23)

2, Parabolic distributions which can be expressed mathematically as

T=T°+T1[1-(2—:-1)2} [1-(%-1)2} : (24)

3. Tent-like distributions which can be expressed mathematically as

)| ) R

#. Sinusoidal or parabolic . o h. Tent-like distribution.
distribution, ’ ‘

Figure 4.0-7. Selected temperature distributions over the

i .
surface of a rectangular plate,
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D. Design Curves,

In Ref, 36 Forray and Newman present the simple means given here to
compute the critical temperature values for the initial thermal buékling of flat,
rectangular plates. Curves are given for the combinations of boundary condi-
tions and temperaturc distributions tabulated in Table 4.0-1. The temperature
variations were chosen to be representative of what would be expected if the
panel were subjected Lo rapid heating.  This condition is conducive Lo thermal
buckling since it Qill usually causc the plate to be much hotter than the supports,
The results of Forray and Newman are plotted in Figure 4. 0-8 for plates having
v = 0.3. The curves do not account for nonuniformities in the material proper-
ties such as those variations that arise because of temperature-dependence of
the material behavior., Hence, the user must select a single effective value
for o by employing some type of averaging technique,

TABLE 4.0-1, COMBINATIONS OF BOUNDARY CONDITIONS AND
TEMPERATURE DISTRIBUTIONS

Boundary Conditions Type 1 Type 11

Temperature Distributions - Sinusoidal -
Over the Surfuce

Parabolic Parabolic

Tent-Like -

A nondimensional plot of the deflection at the center of rectangular
plates of various aspect ratios against temperature level is presented in Figurc

4, 0-9 where
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Figure 4.0-8. Critical temperature parameter for rectangular plates.
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Figure 4.0-9. Deflection w at the center of a rectangular plate for loads

in plane of plate (Poisson' 8 ratio v = 1 .

4
t/2
NT=a E {; T dz, (286)
-t/2
t/2
MT== a E tj/z Tz dz , (27)
and
D EZ

b~ 12(1-v)

In this figure, the nondimensional parametric indicating the temperature level

is (NT/NT ) , where NT , the value of NT at which buckling occurs, is
cr cr
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NTcr = (1-v) {1+ . - . (28)

Plots showing in nondimensional form the variation of Mx in one
quadrant of a square plate and presented in Figures 4.0-10 and 4.0-11 for two
different temperature levels. Because of the double symmetry of the plate,
such a plot is sufficient to determine the distribution of both Mx and My
throughout the entire plate. These plots indicate that the maximum bending
moment occurs, for the cases considered, in the center of the plate. Curves
showing the variation of center inoment with temperature level for various
aspect ratios are shéwn in Figure 4,0-12,

It should be noted that the preceding results were obtained on the
assumption that nonlinear terms in the strain-displacement relations could be
neglected., Therefore, as is usual in problems of this type, the results are

valid only for values of NT sufficiently small relative to NT .
cr

[II, Post-Buckling Deflections With All Edges Simply Supported.

A. Configuration.

The design curves presented here apply only to flat, rectangular plates
which are of constant thickness and are made of isotropic material. It is as~
sumed that the plate is free of holes and that no stresses exceed the elastic
limit, The edge support members must have the same coefficient of thermal

expansion as the plate proper. The design curves cover aspect ratios a/b

of1, 2, 3, anda/b= 5,
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Figure 4.0-10, Distribution of the bending moment Mx in a square plate for

N,

. ] 1
= .25 (Pmssun‘s ratio v = —) .

N 4

T
cr

B. Boundary Conditions,
The solution applies only to cases where both the following boundary
conditions are satisfied:
1. All edges are simply supported.
2. Supports fully restrain in-plane edge displacement of the plate
such that these displacements arce cqual to the free thermal expansions (or
contractions) of the supports.,
C. ‘Temperature Distribution.
It is assumed that no thermal gradients exist through the plate thickness.
Temperature distribution over the surface is taken to be parabolic (Fig.

4.0-13) and can be expressed mathematically as

enen[ (@) [ (399 -
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Figure 4.0-12. Bending moment Mx at the
center of a rectangular plate.
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D. Design Curves,

In many aerospace applications, thermal buckling of flat, rectangular
plates can be tolerated if the post-buckling deflections do not cause excessive
losses of aerodynamic efficiency, do not produce destructive aerocdvnamic
disturbances, etc. In Ref. 37, Newman and Forray present the simple means
given as follows to compute absolute values of the maximum post-buckling
deflections for such plates. The temperature variation was chosen to bhe
representative of what would be expected when the panel is subjected to rapid

heating. This condition is conducive to thermal buckling since it will usually

cause the plate to be much hotter than the supports.

PLATE CONTOUR

Figure 4.0-13. Parabolic temperature distribution over
the surface of a rectangular plate.

The maximum post-buckling deflection occurs at the center of the plate and

can be calculated from the relationship



Section D
duly 1, 1972
Page 234

[ . , bt b2 521
T, 2 xd -0 (1 8)san(B)] &
B 24 | T (30)
(2 )(x)(-2+ i)«»(s) (K)
1-v T, 9 3
where
2
K=1+% (31)
and
1 ty
g = a_(l—:Tr)' (B) . (32)

Solutions to equation (130) arc plotted in Figures 4. 0-14 and 4, 0-15 for plates
having v = 0,30. L is useful to note that, for given values of T, /T, initial
thermal buckling occurs at T,/8 values corresponding to 6/t = 0. The
curves do not account for nonuniformities in the material properties such as
those variations that arise because of temperature~dependence of the material
behavior. Hence, the user must select a single effective value for o by
employing some type of averaging technique,

4,0,3 Thermal Buckling of Cylinders,

Configuration,

The design curves and equations provided here apply only to thin-

walled, right circular cylinders which satisfy the relationship

.2
1/2

(

L/R = (33)

"”':U o
~—
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Fizure 4.0-14. Post-buckiiar parameters for heated rectangular plates,
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Figure 4,0-15. Post-buckling parameters for heated rectangular plates.
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and are made of isotropic material, It is assumed that the shell wall is free
of holes, obeys Hooke's law, and is of constant thickness, Figure 4.0-16
depicts the isotropic cjlindrical shell configuration., Figure 4,0-17 shows the
sign convention for forces, moments, and pressures.

Boundary Conditions.

The following types of boundary conditions are covered:
1. Simply supported cdge; that is,
WM =0 atx =0 and/or x - L., (34)

2. Clamped cdge; that is,

z
|
¢|¥

= 0 atx=0and/orx=L . (35)

It is not required that the conditions at the two ends be the same, In every
case, it is assumed that the cylinder (including any end rings) is not subjected
to external axial constraints at any location around the boundaries at x = 0 and
x=1L,

Temperature Distribulion,

The supposilion is made thit no thermal gradicents exist through the
wall thickness and in the axial direction, However, arbitrary circumfercntial
variations may be ]irescnt. The permissible distributions can therefore be

expressed in the form

T=T (¢ ) . (36)
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5
X

. NOTE: x,v,z, ¢ snd a, sre positive
» shown. in addition, PM,,
and Mz are fictitious loadings
used in derivation and ara likewise

Figure 4.0-16, Isotropic cylindrical shell configuration for thermal buckling.

Figure 4.0-17. Sign convention for forces, moments, and pressure

for thermal buckling.
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Hoop membrane compression may develop in regions adjacent to the two ends
becaus: of external radial constraint. However, the buckling mode associated
with this condition is not considered. Because of this and the lack of external
axial constraints, the special case of a uniform temperature is of no interest
here.

Design Curves and Equations,

1t is assumed that Young's modulus and Poisson's ratio are unaffected
by temperature changes. Hence, in vusing the contents of this manual, the
user must select effective vglues for each of these properties by applying
engineering judgement. It will sometimes be desirable to employ different
effective moduli in eéch of the following operations:
1. Computation of the stresses oy present in the cylinder

2. Computation of the critical buckling stress (ax)
cr

On the other hand, the results are presented in a form which enables the user
to fully account for temperature-dependence of the thermal-expansion coeffi-
cient o .

The appropriate formulation for o can be obtained by first imposing
a fictitious stress distribution o A around the boundaries at x=0and x= L
such that all axial thermal deformations are entirely suppressed. It follows

that

c,=-aET(¢) . (37)
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These stresses may be integrated around the circumference and through the

wall thickness to arrive at the force

2r

P, =-ER { aT(9) do (38)
and the moments

— am

(M) =-ER% [ aT(¢) singdgp

YA 0

and (39)

— 2r

(MZ)A = - ER% bf aT(p)cos¢ dp -

Since it is assumed that the shell is free of external axial constraints, the
conditions

F=‘1\7fy=ﬁz= 0 (40)

must be satisfied at x = 0 and x = L. To restore the shell to such a state,

it is necessary to superimpose a force -I-;B equal and opposite to P A as well

as moments (-l:‘l—y) and (ﬁz) » Which are equal and opposite to (_NTy) and

B B A
(ﬁ) , respectively. Hence,
z
A
Pp=-Fa-
(M) =-(ﬁy) , (41)

B A
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and
(M) =-(M) .
2’ g N
- The stress corresponding to FB is easily found to be
P, P. o
B B E ¢
o= I s o eee————.n o e—
(PB A ~ 2mRt  2r g aT(¢) dp . (42)

The stresses due to (—I\'/I'y) are

B
_ (Eix)_li @y B” Esing T ,
("ﬁ) = f = SRR C - f aT(¢) sin ¢ do
/B y 0 (43)
and those due to (ﬁ )} are
z
B
M)y (M)y
_ B - szEcosgb fﬂ T (6) 4
("-—) =TT - aT(4) cosy dp .
Mz z 0
B (44)

' The procedure being used constitutes an application of Saint-Venant's principle.
_ Hence, the stresses from equations (42) through (44) will be accurate repre-
sentations only at sufficient distances from the ends x = 0 andx = L. If end
rings are present, the greater their resistance to out~of-plane bending, the
shorter will be tl"ns distance, Subject to these conditions, the actual longitudinal
thermal stresses at various points in the shell may be computed from the

relationship
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o =a, +fo_\ + fo_ + fo__ {(45)
x A (P)n (M) (Mz)
¥/'B B
or
E 2
ax=-aET(¢)+‘2'; g aT(¢) dp
" Esi ax
+-£ﬂ;n—tf aT(¢) sing d¢
0
E cos an
+-—w—£ Of aT(¢) cos pdp . (46)

Complex distributions may be encountered which make it difficult to perform

the required integrations. In such instances, use can be made of numerical

techniques whereby the integral signs are replaced by summation symbols,
To investigate the stability of a particular shell, the maximum longi-

tudinal stress (ox) must be compared against the critical value which can
max

be obtained from the formula

@) - Et

. 47
Xop R 3(1 - ) 40

For the design to be satiafactory, it is required that

(@) <o) . (48)
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The quantity y appearing in equation (47) is a so-called knockdown factor,
which mainly accounts for the detrifnental effects fromk initial imperfections.
Note that equation (47) is identical to that used for uniformly compressed
circular, cylindrical sheils. Its application to the present problem is justified

on the basis of small-deflection studies reported in Refs. 38 and 39. From the

results given in these references, it can be concluded that, regardless of the
nature of the circumferential stress distribution, classical theoretical insta-
bility is reached when the peak axial compressive stress satisfies the expres-

sion

Et

(0.} = .
*max BRV3(1-7)

In view of this, the values used here for y were determined from the 99 per-

(49)

cent probability (confidence = 0,95) data for uniformly compressed cylinders,
as reported in Ref, 40, The resulting y values are plotted in Figure 4.0-18

for I./R ratios of 0.25, 1.0, dand 4.0.

Summary of Equations and Curves,

E 2r
crx.-:-aET(cp) * o '(j,. aT(?) de

2r

+—---——25-E sin ¢, f ‘aT(¢)sing dp '
0

T

21
+E-c—:-s-2{ aT (¢) cos ¢ d¢ : (50)
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and
Et
(e) =y —(/——— . | (51)
X er RV 3(1 - v?)
When v = 0.3 this gives
. Et
(O‘X) = -0.606y = . (52)

cr

The knockdown factor y is obtained from Figure 4.0-18,
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¥

Figure 4. 0-18. Knockdown factor.



