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and

1-v

8 1

For any plate dimensions and material properties, the stresses may then be

determined by using the appropriate design equations. This gives

Q
]

X 1-v b b b

Ea X
-l—vTo(l-a) ’

- E (z2r in 27X 2 T ™ oin™
O'y 1-v2(b By, sin a %5 +vaA“cosa sinb)

- Hk‘_—%i T.,(l--’af) ,

E 1
(AT cos ™ s-mﬂ“,_zszz gin 2™ oog 2T
a a a

and

- Q Toin™ cos X 21 o5 2T oo 2Ty
Txy G (A“bs1nacosb+B22acos a Sib .

It can be seen that, for more complicated temperature distributions and higher
values of N, efficiency considerations would dictate the use of a relatively
simple digital computer program in applying this method of analysis.
3.0.8 Shells.

The analysis of shells subjected to temperature variations has, for the

most part, taken the approach of treating thermal loadings as equivalent
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mechanical loadings and hence solving the stresses and displacements by
techniques such as in Scction B7.3. Thesc approaches are discussed in
Refs, 7 and 8. Some of the more common temperature distributions in shells
will be discussed in the following section.
3.0.8.1 Isotropic Circular Cylindrical Shells.

This section covers the thermostructural analysis of thin-walled,
right circular, isotropic cylindrical shells. The middle-surface curvilinear
coordinate axes (x and y) arc always taken parallel to the axis of rcevolution
and the circumfercential direction, respectively.

The organization of this scction is somewhat different from that of
the sections which cover isotrobic flat plates. This is due to certain funda-
mental differences between the physical behavior of flat plates and shells.
Flat-plate deformations are of such a nature that it is helpful to group the
solutions for stable constructions into the following categories:

1. Temperature gradients through the thickness

2. Uniform tempcraturcs through the thickness.

Except for the special case of sclf-cquilibrating gradients through the thick-

nessl(NT =0, M,, = 0), the first of these two cascs involves out-of-plane

'1'
bending which is, of coursc, accompanied by displacements normal to the
middle surface of the undeformed plate. In case 1, the plate remains flat;

that is, the only displacements occur in directions parallel to the original

middle surface and no out-of-plane bending occurs. The governing differential
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equations in these two instances arc quite different and the indicated separation
of the cases is a logical format for the sections dealing with flat plates.
However, the situation is not the same for circular cylindrical shell structures.
For these components, a single governing differential equation includes the
phenomena related to both cases 1 and 2 and there is no need to isolate
these two types of thermal conditions. This is because either type of
temperature distribution, in conjunction with clamped or simply supported
boundaries, will lead to both membrane loading and bending about the shell-
wall middle surface. Consequently, for stable constructions which comply

with either case 1 or 2, the solutions are given in a single grouping as follows.

I. Analogies with Isothermal Problems.

A. Configuration.

This discussion is restricted to thin-walled, right circular cylinders
which are of constant thickness and are made of isotropic material. 1t is
assumed that the shell wall is free of holes and that it obeys Hooke's law,

Figure 3.0-37 depicts the isotropic cylindrical shell configuration.
Figure 3.0-38 shows the sign convention for forces, moments, and pressure.

B. Boundary Conditions.
The following three types of boundary conditions ére discussed:
1. Clamped edge; that is,

dw

= = = 0 at =0 and =L 1
wo= o X and/or x (1)
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NOTYE: u, v, w, X, v, 2z, and ¢
are positive as shown.

MIDDLE SURFACE

Figure 3.0-37. Isotropic cylindrical shell configuration for
analogies with isothermal problems.

P(P*)

NOTE: All quantities are positive as
shown. Internal pressure iy
positive as indicated.

N
y ¢

Figure 3.0-38. Sign convention for forces, moments, and pressure
for analogies with isothermal problems.
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2. Simply supported edge; that is,
w=M =0 at x =0 and/or x=1L (2
3. Free edge; that is,
Mx=Qx=0 at x=0 and/or x=L . (3)

All possible combinations of these boundary conditions are permitted. Hence,
it is not required that those at x = 0 be the same as those at x =L . In
every case, it is assumed that the cylinder is unrestrained in the axial
direction (Nx =0).
C. Tcmperatt1re Distribution.

The temperature distribution must be axisymmetric but arbitrary
gradients may be present both through the wall thickness and in the axial
direction. The permissible distributions can therefore be expressed in the

form
T = T(x,z) . (4)

Any of the special cases for this equation are acceptable, including that where
the entire shell is at constant temperature.
D. | Analogies.
It is helpful for the user to recognize that, for circular cylinders,

analogies exist between problems involving axisymmetric temperature
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distributions and certain problems where mechanical loading is present but
thermal effects are entircly absent (isothermal problems). The various types
of correspondencc are discussed herein where it is assumed that Young's
modulus and Poisson's ratio are unaffected by temperature changes. On the
other hand, one can account for temperaturc dependence of the thermal-
expansion coefficient o by observing that it is the product «T which governs;
that is, the actual temperature distribution can be suitably modified to
compensate for variations in @« . When this approach is taken, the user must
recognize that any refercnce to linear temperature distribution is actually a
reference to a straight-line variation of the product «T .

It is also helpful for the user to recognize that, regardless of the
complexity of a thermal gradient through the thickness, at any location (%,v)
the distribution can be resolved into

1. A self-cquilibrating component, and/or

2. A uniform component, and/or

3. A nonuniform linear component passing through T =0 atthe

middle surface.

A self-equilibrating temperatuire component is one for which

t/2

/f Tdz = 0
-t/2
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and
t/2
Tzdz = 0 ., (5)
-t/2

An example of such a distribution is illustrated in Figure 3, 0-39.

Figure 3.0-39. Sample self-equilibrating temperature distribution.
From a practical viewpoint, it may be assumed that gradients of this type will
not cause any deformation of the cylinder. Their only influence wiil be on
the stresses o’x and O;p . I, for example, a solution is available for any
arbitrary temperature distribution T = T(x,z) , the effects can be easily
superimposed from a component T,(x,z) which satisfies equations (5). It

is necessary only to algebraically add the stresses

to the previously determined values for the appropriate locations (x,z).
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In this séctlon, the following two categories are treated sepal;étely:

1. Uniform temperatures through the thickness with or without

axisymmetric, longitudinal gradients; that is,
T = T(x) . (7)

2. Nonuniform linear temperature gradienfs through the thickness,
passing through T =0 at the middle surface with or without axisymmetric
longitudinal variations and possibly including self-equilibrating components;

that is,
T = Tx,2) + Tox) § ®

where T, satisfics equations (5).

Uniform Temperatures Through the Thickness [T = T(x)].

In Ref. 16, Tsui presents the small-deflection governing differential
equation for the subject shell, After conversion to the notation and sign

convention used here, this expression becomes

N d’m
R R N (P ©)
b b b
where
4 4 2
_ Et _ 3!1— v [
B = Nipa? ~ a’t? ’
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t/2
N, = Ea /f Tdz ,
-t/2
t/2
M, =Ea [ Tzdz ,
T
_ -t/2
(10)

and

Et

Dy = 1201 - )

An inspection of equation (9) reveals the key to an analogy which applies to
the problem under discussion. Note that, for the isothermal problem, this

equation reduces to

diw . p_ :
ad T8 = o, (11)

For thermostructural problems where pressure differentials are absent and

the temperature is uniform through the wall thickness (MT = 0), one obtains

N
diw _ T
—-de +4pw = —'Bb—a . (12)

A comparison of equations (11) and (12) suggests that the latter problem may
be treated by means of an isothermal model that {8 loaded by a pressure

differential, p =p*, where
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N
T LaTt
px) - —  —(— . | (13)

With regard to the edges, it should be noted that, since MT =0, the boundary
conditions for fhe actual cylinder can be expressed as follows [16]:

1. Clamped edge:

dw

=-a;=0 at x=10 and/or x=L ., (14)

2. Simply supported edge:

W= — = 0 at x =0 and/or x=L . (15)

—— = = = ) at x =0 and/or x=L . (1‘5)

Thesge relationships do not contain any temperature terms and are therefore
identical to those for the corresponding isothermal cases. Therefore, the
major equivalence between the subject temperature distribution [T = T(x)]

and tt;e isothermal model is bound up in the governing differcntial equation (9) .
Hence, the desired nnalogy is achieved by simply substituting p* for p in
equation (11). When this pressurc is positive, it acts radially outward. It

is important to note, howcver, that the analogy is complete only insofar as

the radial deflections and the axial stresses are concerned; that is, the thermal
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deflections w and the thermal stresses o will be identical to those due
solely to a pressure p* acting on a cylinder having the same geometry and
boundary conditions as the actual structure. On the other hand, to determine
the thermal stress o x the quantity (-Ea'T) must be added to the correspond-
ing value obtained from the pressure solution. This accounts for the fact that
strains ¢ s in the amount aT arc associated with stress-free thermal
growths or shrinkages.

To facilitate the application of this analogy, the user should refer to

Section 2.40 of Ref. 17, which includes solutions for numerous cases of
pressure-loaded cylindrical shells (a wide variety of pressure distributions

and boundary conditions are treated).

Temperature Gradients Through the Thickness [T = T{(x,z)].

This subsection discusses factors associated with cylindrical shells
having nonuniform linear temperature gradients through the thickness, passing
through T =0 at the middle surface, with or without axisymmetric longitudi-

nal variations, and possibly including self-equilibrating components; that is,
T = Tyx,2z) + Tyx) f (17)
where

t/2

/( T,dz = 0
-t/2
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and
t/2
Tedz = 0 . (18)
-t/2

Here again, it is helpful for the user to study the following small-deflection
governing differential cquation which was obtained by converting the
corresponding formulation of Ref. 16 to the notation and sign r ui.vention cf

this section:

N d*m

T 1 T
+4 ﬁdw - - BN — - 2 (19)
D, D2 Db(l -v) dx

diw
ax?

where
SRV e 4 :
o et f3(1-v%)
B =4aDat ~ alt? ’
b
' t/2
N'I‘ = Ea f Tdz , (20)
_ -t/2
t/2
MT = Ea f Tz dz ,
. -t/2
and

O EE
b~ 12(1 - v?)
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For the isothermal problem, this equation reduces to
“w
a¥W gty = -2 (21)
dx Db
while, for the subject thermostructural problem,
N, =0 (22)
and equation (19) becomes
atw ‘ Iy
d—x7+43‘w = _Db(l_v) = (23)

A comparison of equations (21) and (23) suggests that the latter problem may
be treated by means of an isothermal model that is loaded by a pressure

differential, p =p*, where

d*M
P’ =T - (24)

This does not,‘ however, provide a complete bagis for the desired analogy
since the boundary conditions which are likewise part of the problem formu-
lation must be considered. From a study of conventional types of boundaries,
it 18 clear that the simplest form of the subject analogy is that associated
with a cylinder ha{(ing both ends clamped. In this case, both the radial

deflection and the related slope must vanish at the boundaries; that is,
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w = 0
at x=0 and x =L . (25)
dw
ax - 0

The simplicity of the analogy for this situation comes about because these
relationships do not contain any temperature terms and are therefore identical
to those for the corresponding isothermal problem. .Asa result, the major
equivalence between the subject temperature distribution and the pressure
loading is bound up in the governing differential equation (19). Hence for
cylinders clamped at both ends, the analogy is achieved by simply substituting
p* for p in equation (21). When this pressure is positive, it acts radially
outward. It is important to note, however, that the analogy is complete only
insofar as the radial deflections are concerned. That is, the thermal
deflections w will be identical to those due solely to a pressure p* acting
on a cylinder having the same geometry and boundary conditions as the actual
structure. On the other hand, to determine the thermal stressces o and 09') ,
the quantity [~-EaT/(1 - v) | must be added to cach of the corresponding values
obtained from the pressure solution. This accounts for the possible presence
of a Self-equilibrating temperature component and for the fact that strains o
and € ¢’ in the amount a¢T , are due dolely to stress-free thermal growths
or shrinkages.

Although the analogy under discussion takes on its simplest form where

both boundaries are clamped, this general method need not be ruled out for a
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simply supported shell. In the latter case, tho analogy with respect Lo
equation (19) still holds truc., ‘T'he added complexity is introduced only through

the boundary-condition formulations. In this connection, the bending moment

Mx may be expreased as follows {16} :

M
dxw T
M = Dhax? -9 - o (26)

This relationship is applicable anywhere in the shell, including positions
around the boundaries. Only the latter locatlons need be considered here. It
should be recalled that the condition of simple support includes the requirement

that

Mx-=0 at x=0 and/or x=1 . (27)

Suppose a uniformly distributed external bending moment Mx'" is applied
around such a boundary, as defined by the equation
MT -

Mx‘ = '(-1"':—;)' . ' (28)

~'The user must remember that the sign convention being used specifies that
a positive bending moment causes compressive stresses on the outer surface
of the shell wall (refer to Fig. 3.0-38). By superimposing moments Mx'"
around a simply supported end, the related expressions for the boundary

conditions become
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M M
_ dw T T . _ o
Mx__Dbdxz (1—'v)+(1-v) =0 at x =0 and/or x =1L
(29)
or
d%w |
M =-D o7 =0 at x=0 and/or x=1L . (30)

Equation (30} is the same as that for a simply supported boundary of a
cylinder which does not experience any thermal influences. Hence, for a
circular, cylindrical shell having both ends simply supported and subjected
to the temperature distribution defined by equations (17) and (18), thermal
deflections w can be obtained by superposition of the following:

1. The radial deficctions of a simply supported cylinder which is
identical to the actual structure but is frec of any therrﬁal influcnccs and is
subjected to a pressure p* where

M

p*x) = (1{ ” -&11 (31)

and })ursting pressures are positive.

2. The radial deflections of a cylinder which is free of thermal
influences,. is identical to the actual structure, and whose boundaries conform
with the condition of simple-support except for the application of uniformly

distributed moments Mx* ‘at each end, where
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M
T
¥
My = 1-v) - (32)

The thermal st:l-eBSes o, and ¢ P are found by adding the quantity
(-EaT/(1 - v)] to the algebralc sum of these stresses associated with steps
lland 2. To facilitate the application of this analogy, the user should refer
to Section 2.40 of Ref. 17, which includes numerous solutions that will often
be useful in performing step 1. In addition, Refs. 17, 11, and 18 provide
simple methods by which step 2 may be accomplished.

A situation similar to the foregoing arises when both boundaries of
the shell are free. As before, the analogy with respect to equation (19)
remains valid but still greater complexity {8 introduced through the applicable
boundary-condition formulations. In this case, when the cylinder is subjected
to the temperature distribution defined by equations (17) and (18), thermal
deflections w can be obtained by superposition of the following:

1. The radial deflections of a cylinder which has both ends free and is

identical to the actual structure but is free of any thermal influences and is

subjected to a pressure p* where

d2M
P = (1£ u)Ec’I (33)

and bursting pressures are positive,
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2. The radial deflection of a cylinder which is free of thermal influences,
is identical to the actual structure, and has the prescribed boundary conditions
except for the application of uniformly distributed moments M** at each end,
where

M
T .
L S :

M Ty - (34)

3. The radial deflection of a cylinder which is free of thermal influences,
is identical to the actual structure, and has the prescribed boundary conditions
except for the application of uniformly distributed shear forces Qx* at each

end, where

"~
* _ 1 T
% T & | - (85)

The thermal stregses 0'; and a¢ are found by adding the quantity

[-EaT/(1 - v) ]‘ to the algebraic éum of these stresses associated with items

1 and 2.l To faciiitate the aﬁplication of this analogy, the usér shvould refer

to Scction 2.40 of Ref. 17, which includes numerous solutions that will often

be u‘scful in the accomplishment of step 1. In addition, Refs. 17, 11, and 18

brovide simple methods by which steps 2 and 3 may be accomplished.
Analogies of the types presented in this section perform a two-fold

function in that they can help the user to develop some physical insight into

thermostructural behavior and also enabic him to solve thermal stress
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problems by using existing solutions for members subjected solely to
mechanical loading. Although the emphasis has been on cases where hoth
ends of the cylinder have the same boundary conditions, the user should {ind
it relatively easy to apply the same basic concepts when the two boundaries
are not identical (for example, one end clamped while the other is simply

supported) .

II. Thermal Stresses and Deflections — Linear Radial Gradient,

Axisymmetric Axial Gradient.

A, Configuration.

The design equations provided here apply only to long (L =27/8),
thin-walled, right circular cylinders which are of constant thickness and are
made of isotropic material. It is assumed that the shell wall is free of holes
and that it obeys Hooke's law. Figure 3. 0-37 depicts the igsotropic cylindrical

shell configuration. Figure 3.0-38 shows the sign convention used for the

stress resultants of interest.
B. Boundary Conditions.
The following types of boundary conditions are discussed:
1. Free edges
2. Simply supported edges
3. Clamped edges.
All possible combinations of these boundary conditions are permitted; that is,

it is not required that those at x =0 be the same as those at x = .. However,
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in every case, it I8 assumed that the cylinder {8 unrestrained in the axial
direction (N_ =0).
C. Temperature Distribution.
The following types of temperature distributions may be present:
1. A radial gradient which is linear through the wall thickness and
need not vanish at the middle surface

2. Axisymmetric axial gradients.

The permissible distributions can therefore be expressed in the form

T = Tx) +T¥) 2 (36)

Certain restrictions must sometimes be imposed on the complexities of the
functions T,(x) and T,x) , depending upon the method of analysis employed.
These conditions are explained in a subsequent paragraph. | Any of the special
cases for equation (36) are acceptable; that is, either or both of Tyx) and
To(x) can be finite constants and either can be equal to zero.

D. Design Equations.

Throughout this section, it is assumed that Young's modulus and
Poiéson' s ratio are unaffected by temperature changes. Hence, the user
must select single effective values for each of these properties by employing
some type of averaging technique., The same approach may be taken with

regard to the coefficient of thermal expansion. On the other hand,

-
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the temperature-dependence of this property can be accounted for by
recognizing that it is the product of aT which governs; that is, the actual
temperature distribution can be suitably modified to compensate for variations
in o . When this approach is taken, the user must recognize that any
reference to a linear temperature distribution is actually a reference to a
straight-line variation of the product oT .

In addition, the several types of solutions cited here are based on
classical small-deflection theory. Therefore, it is important for the user to
be aware of this when applying the given methods to pressurized cylinders by
superimposing the thermal stresses and deflections upon the corresponding
values due solely to pressure; that is, because of their dependence upon
classical theory, the methods presented here cannot account for nonlinear
coupling between thermal deflections and the pressure-related meridional
loads,

The small-deflection governing differential equation for the subject

cylindrical shell (refer to Fig. 3.0-37) can be written as follows [19]:

N d*M
diw T 1 T
ad T4B = - DA D(1-») & (37)

where
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‘ 3(1 - 'v?)
g = \/7[) a? = »\/ aft?
t/2 _ |
No=Ee [ Td ,
-t/2
(38)
t/2 |
M. = Ea f Tz dz ,
T -t/2
and
Et

Dy = 20—

If L=2n/8, then overlapping effects from boundary conditions at the two
ends of the cylinder can be neglected and the following approximate solutions
to equation (37) apply to each half of the{_structure:

CASEI(0=x=L/2):

aN d*M

- T a’ T
w = e PX (Cy cos px + C, sin Bx) - Bt EQ-9) al (39)
CASE I (1/2 =x =1):
w = e—ﬁ(L-x) [Cy cos B(L - x) + C, sin (L - x) |
N d*m
% a2 T (20)

T Et  Et{1-v) dx?
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The terms e-ﬁx(C, cos gx + C, sin fx) and e_’(l"-x) [Cs cos (L - x)

+ Cy 8in B(L - x)] comprise the respective complementary solutions to

equation (37). All of the boundary-condition influences are embodied in these
terms. The remalning portions of equations (39) and (40) are the so-called
particular solutions and those given here are somewhat inexact. They were
obtained by Przemieniecki [20] as first-order approximations from an
asymptotic integration process and will give exact results only if the functions
T,(x) and Tx) are truly polynomials of second degree or lower; for exampie,
Tyx) =by + b,g +bx? and Tfx) =dg+dx + dx?.

When the temperature distribution is such that polynomial expansions
of T, and/or T, require terms higher than the second degree, approximate
solutions can be obtained by using either of the following two procedures:

1. Truncate the series by eliminating terms having exponents greater
than two and perform the analysis as though the resulting series were exact
representations of | T(x) and Tx) .

2. Ignore the stated restriction on the polynomial expansions and usc
the actual higher-degree formulations.

Either of these two possibilities will introduce inaccuracies and, at present,
no studies have been performed to determine the orders of magnitudes for
the errors assoclated with various ranges of the parameters involved. For

those cases where accurate results are required but equations (39) and (40)
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are inexact, the user can always resort to an aiternative proc'edlire whereby
these expressions arc suitably modificd. This can be accomplished by
retalning the 'fore'going complementary solutions but introducing more
appropriaté pérﬂcular solutions. | The latter can be established by standard
mathematical operations such as variation of parameters or the method of '

undetermined coefficients [2 1,22].

For any case, the constants C,; through C, in the deflection relation-
ships must be evaluated from the boundary conditions. It therefore becomes

necessary to express the various physical possibilities by means of the

following formulas:

1. Free edge:

w=M =0 . » (41)

where
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de
Qx dx
and (42)
w - -p & T
x bdx* (1-v) °

The method to be used will be illustrated by using the example of a cylinder
having a simply supported edge at x = 0 and a clamped edge at x =L . For
the portion of the cylinder whereb 0-<x~ L/2, the values x=0, w=20
would be inserted into equation (39) to obtain a reclationship which may be
identified as equation (39a). Following this, equation {(39) must be substituted
into

s
bdx? (1-v)

0 (43)

and x must then be set equal to zero in the resulting formuiation to obtain an
equation which may be identified as (39b). The constants of integration C,
and C, can then be determined by the simultaneous solution of equations (392)
and (39b). For tiae portion of the cylinder where L/2 =x < L, thc valucs

x =L, w=0 would be inserted into equation (40) fo obtain a relationship
which may be identified as (40a). Following this, equation (40) must be

substituted into
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LA (44)

and x must then be set equal to L in the resulting formulation to obtain an
equation which may be identified as (40b). The constants of integration C,
and C; can then be determined by the simultaneous solution of equations (40a)
and (40b) .

Once the deflection equations have been fou‘nd for both halves of the

cylinder, the bending moments Mx and M 5 at any point can be established

from
T e
X bd<? (1-v)
and (45)
aw Mt

M, = "Dy -9

Then the stresses at any tocation are given by the following:

.1z
x t*f Tx
and (46)
N
o - % 12z
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where
W
N¢ = =N -~ Et . (47)

Example No. 1.

A thin-watled, right circular cylinder of length L(>27/8) has both

ends simply supported and is subjected to the temperature distribution
z
T = dog (48)

where d; is a constant. It is desired that the deflections and extreme-fiber
stresses be found, assuming that L =40in. and 8 =0.2.

For the given temperature distribution, equations (38) yield

NT =0
and (49)
M. - Eatid,
T 12

Then, for 0 =x <L/2, equation (39) becomes
_ﬁx
w = e  (CycoBpx+C,singx) .

At x =0, the boundary condition of simple support requires that
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wo= Mx =0 (51)
where
w - p Sw M
X hdx? (1-v) ° (52)

From equations (50), (51), and (52), thc constants C, and C, arc found to

be

and (53)

c. - ata’p? |
T

Hence, equation (50) may now be rewritten as follows:

at a’p? -px .
~———p—d"eﬁ sin Bx . (54)

W T8 - )

The function &(gx), tabulated by Timoshenko and Woinowsky-Krieger {11}

may now be introduced to obtain

at a%s?
Yo oy U £(Bx) (55)

where

t(Bx) = ¢ sinpx . (56)



Sectiun I)
July 1, 1972
Page 159

By substituting equation (55) into (45), the bending moments can be expresscd

as
_ _Eat¥d, }
M = 12(1 - v) 16(Bx) - 1)
and (57)

E 2
M, - —E(“l—t}% [(vo(8x) -1}

where the function 0(3x) is tabulated by Timoshenko and Woinowsky-Krieger

[11] and is defined as follows:
_Bx
0(Bx) = ¢ cosBx . (58)

The extreme-fiber stresses can then be determined from

6M
(v . F o X
X Lr
and (59)
N 6M
o = ~—2 T —T‘Q
) t t?

where the upper signs correspond to the outermost fibers, By substituting
equation (55) and the first of equations {49) into (47), the following expression

is obtained for N 5 :
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_ Eat2a§2 .
N¢'— - 6(1 - V) do ;(BX) . (Gn)

For the other half of the cylinder (1./2 - x 3 L), cquation (40) must be uscd,

which, in view of cqualions (49), bccomes

w = e-ﬁ(L_x) [Cy cos B(L - x) +Cysinp(L - x)] . (61)

At x =L, the boundary condition of simple support requires that

where

dw M (3)

“Uhax? _-(1 - v)

M-
X

From equations (61), (62), and (63), the constants C, and C, are found to

be
03 = 0
and (4)
_ ata’g®
Ce=Sa-nD -

Then, proceeding in the same manner as for the other half of the cylinder, the
following expressions are found for the deflections, moments, and extreme-

fiber stresses:
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W ;a)(tl_a& dytig(t-x)1 (65)
M_ - EH_L {ol8(L.- ¥)I -1}
(66)
Ext<d
M, - 1—2(;1-& wela(L - x)I - 1}
6M
a =% zx ’
X t
and (67)
N 6M
g = “‘Q;"'TQ
o t ot
where
2 ol
N =22ty rian-x)) . (68)

¢  6(1-v)

Here again, the upper signs in the stress formulas correspond to the outer-
most fibers.,

The foregoing relationships for the two halves of the cylinder were
used to obtain the nondimensional solution listed in Table 3.0-7. These
results arc plotted in Figure 3. 0-40.

Example No. 2,

A thin-walled, right circular cylinder of length L{> 2n/8) has both

ends clamped and is subjected to the temperature distribution

T = by+bx {69)



TABLE 3.0-7. NONDIMENSIONAL TABULAR SOLUTION FOR w AND Mx (EXAMPLE NO. 1)

a,b,c

0=x=L/2 L/2=x=<L
x | Bx 3(8x) 6(8x) 6(Bx)-1 | x | (L-x) |B(L-xn) | LiB(L-x)}} | ofp(L-x)] | 6(8(L-x)]1-1

0 0 0 1.000 0 20.0 | 20.0 4.9 -0.0139 -0. 0120 ~1.0120
0.5| 0.1 0.0903 { 0.9003 | -0.0997 | 25.0 | 15.0 3.0 0.0071 -0. 0493 ~1.0493
1.0} 0.2 0.1627 | 0.8024 | -0.1976 }30.0 { 10.0 2.0 0.1230 -0. 0563 -1. 0563
2.0| 0.4 0.2610 | 0.6174 | -0.3826 |35.0 | 5.0 1.0 0.3096 0.1988 -0. 8012
3.0 0.6 0.3099 | 0.4530 | -0.5470 | 37.0 ] 3.0 0.6 0.3099 0.4530 -0. 5470
5.0 1.0 0.3096 | 0.1988 | -0.8012 | 38.0 | 2.0 0.4 0.2610 0.6174 -0.3826
10.0§ 2,0 0.1230 [-0.0563 | -1.0563 | 39.0 | 1.0 0.2 0.1627 0. 8024 -0.1976
15.0| 3.0 0.0071 {-0.0493 | -1,0493 |[39.5| 0.5 0.1 0.0903 0. 9003 -0, 0997

20.0| 4.0 | -0.0130 |-0.0120 | -1.0120 |40.0 0 0 0 1. 000 0

a. 8§ = 0.20.

b. 4{px) = w/l(ata®8%d,)/6(1-»)) = LI3(L-x)] .

c. 6(Bx) -1 = Mx/{(qutzdo)/m(l -} =6[3(L-x)] -1 .

797 93eq

2L6Y ‘1 Appp
{ uorjdog
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where b, and b, are constants. It is desired that the deflections and

extreme-fiber stresses be found, assuming that L, =40 in., 8 =10.2, and

bl/b0=2 .

For the given temperature distribution, equations (38) yield

N = Eat (bo+b1X)

Figure 3,0-40. Nondimensional deflections and axial bending

moments for example problem No. 1.

T
and (70)
MT - 0 »
08
B
[
* 5 04
«, w
Ng /\ \( -A{ota®52d, )/6(1-v) / \
0 ——
x /
) A
\ /
‘\ I
~ 04 \ /
: \ /
< \
: (;ue ‘\
5
- 08
\
\ /
N R =1 T - e Mx ]
- (Eat®d, 1/12(1-0)
1.2 | 1
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Then for 0 <x =L/2, cquation (4) becomes
-Bx
w = e (Cycospx+C,sinpx) ~ aa(by+byx) . (71)
At x =0, the clamped condition requires that
(M .
W= dx o . (72)

From equations (71) and (72), the constants C; and C, are found to be

I

Cl Cfabg

and (73)

aab,
B

C2 ﬂ’ﬂh(} +

Hence, equation (71) may now be rewritten as follows:

w o= e_Bx[anbo(cos 8x + sin Bx) +£§-§1 sin Bx] - aalby + byx) . (74)

The functions ¢(8x) and t{(8x) , tabulated by Timoshénko and Woinowsky-

Krieger {11}, may now be introduced to obtain

w o= aab0¢(BX) +g§lt')l g(ﬁX) - aa(bo + bIX) (75)

where

o(Bx) = e—Bx(cos Bx + sin px) (76)
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and
_'Bx
t(Bx) = e sinBx . (76)
(Con.)

By substituting equation (75) into (45), the bending moments can be

expressed as

> 2], by
M Zaaby D g [¢(ﬁx) 'h.,B o{ 8x)

and ' (77)

where the functions $(8x) and 0(B8x) are tabulated by Timoshenko and

Woinowsky-Krieger [11] and are defined as follows:

¥(Bx) - ¢ hx (cos pix - sin px)
and (78)
_Bx

6(Bx) = ¢’ cos Bx

The extreme-fiber stresses can then be determined from

g =% 3 (79)
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apd
Nm 6
-, b ___i‘l‘ (79)
) (Con.)

where the upper signs correspond to the outermost fibers. By substituting

equations {75) and (70) into (47), the following exnression is obtained for N¢

¥, = -Eabhpte(Bx) —E%’ﬂc(ﬂx) . (0)

For i~ ~thow half of the cylinder (L/2 =x <L), equation (40) must be uscd,

which, in view of equations (70), becomes

w o= e’ﬂ(L'x) [Cy cos B(L - x) + CysinB(L -~ x)] ~ alby+ b;x) . (81)

At x =L, the clamped condition requires that

w=—-—"=20 . (82
From equations (81) and (82), the constants C; and C, are found to be
03 = aa(bo+ biL)

and (83)

—g—@l+aa(b0+b1b) .

0
-
It
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Then procecding in the same manner as for the other half of the cylinder, the
following expressions are found for the deflections, moments, and extreme-

fiber stresses:

w e aabo(l %‘1) BIB(L - x)] - 2220 £ 1p(L - %)) -aabo(n-'llx).
(] ]

g8 b
(84)
M Zaaf hyh ’ Pty (L - x) | -31—0[3([ - x)l‘
X ¢ )] h l [)“ ) 4 b“B : { )
 (#0)
M¢ : va ,
6M
F ——a
T © 2
and (86)
N 6M
o —21
¢ t L

where

N¢ - -Eab,t (1 4—2-: |,) I18(1, - x)| + E—‘”‘?ﬁ ¢ipli.-x)) . (87)

Here again, the upper signs in the stress formulas correspond to the outer-
most fibers.

The foregoing relationships for the two halves of the cylinder were
used to obtain the nondimensional solution shown in Table 3.0-8, These

results are plotted in Figure 3. 0-41.
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TABLE 3.0-8. NONDIMENSIONAL TABULAR SOLUTION FOR
w AND M (EXAMPLE NO. 2)

1 z 3 ‘ 5 ] T 8 9
x oo | e |2 ue -(nﬁtx) A | wew | Beeo| A
by by byp

0 0 1.000 0 -1 0 L0 10.0 11,0

0.5]| 0.1 | 0.9907 0.903 -3 -0,1083 | 0,81 5.003 | 9.813 |

1.0} 0.2 | 0,9851 1.627 -3 -0,4078 | 0.8398 8.024 . | 8.6638

2.0| 0.4 | o.8784 2,810 s -1.5116 | 0.3564 8,174 | 6.5304

s.0] o.¢ | o.7628 3,099 -7 -2.1382 | 0.1431 4.530 | 4.8731

5.0 Lo | o.5083 3.006 -11 ~7.3957 |-0.1108 1.988 | 1,8772
10.0 | 2.0 } 0.0687 1.230 -1 -19.7033 [-0.178¢ | -0.563 | -0.7424
15.0 | 3.0 | -0.0423 0,071 - -30.9713 |-0,0883 | -0,493 | -0.5493
20.0) 4.0 ] -0.0258 | -0.117 -41 -41,1428 | 0.0018 | -0,120 |-0.1181
o Ay = (w/ashy) = (3) +(4) +(5) .
b, Ay = (l‘/na.n.nhs') = {7} +{(8) .

(1+%:L) "5%‘5 W (1+%:L) b—I:lE __Mx_r
x % b aabg x x 2¢ub.,Dbﬂ

x | (Lm0 | sr-x) | ela(L-n1 | Limi-x)) '(‘ *Ei") =(4) +(5) +(8) | #IB(L-x}] | &(A{L-x)] | =(8) - (8)

1 2 3 4 5 6 7 8 9 10
20 | 20 4 -2,0898 0,117 -41 ~42, 9728 0,1539 -0.120 0.2739
25 | 18 9 -3,4263 -0,071 -51 -54.4973 -4.5603 -0.403 -4.0673
30 10 2 6. 4027 -1,280 -61 -56. 8273 -14.5314 -0.563 -13. 9684
38 8 1.0 41,1729 -3, 008 -1 -32, 9237 -8.9748 1.988 -10.9828
LY 3 0.8 81,7869 -3.099 -78 -18,3121 11,5811 4.530 7.0611
38 3 0.4 71.1504 -2.610 -77 -8,4506 28. 8684 6.174 22. 6944
» Le | oz 8.1731 -1.627 - -2,4539 51,8238 8, 024 43.7998
9.8] o8| on 0. 3467 -0,903 -80 -0, 0863 65.610 5. 003 56. 607
40 0 0 81,00 (] -81 0 81.0 10.00 71.00
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Figure 3.0-41. Nondimensional deflections and axial bending

moments for exampie problem No. 2.
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III. Thermal Stresses and Deflections - Constant Radial Gradient,

Axisymmetric Axial Gradient.

A. Configuration.

The design curves and equations presented here apply only to thin-
walled, right circular cylinders which are of constant thickness and are made
of isotropic material, It is assumed that the shell wall is free of holes and
that it obeys Hooke's law. The method is valid only when A =7 . Figure 3.0-
42 depicts the isotropic cylinder shell configuration. Figﬁre 3.0-43 shows the
sign convention for forces, moments, and pressures.

B. Boundary Conditions.
The following types of boundary conditions are discussed:

1. Free edge; that is,

Q =M =0 . (88)

w=M =0 . (89)
. 3. Clamped cdge; that is,

dw
=~ = 0 {
w d ) (90)

Al] possible combinations of these boundary conditions are permitted. Hence,

it 18 not required that those at x = 0 be the same as those at x = L. However,
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NOTE: u,v,w,X,y,2, and ¢ are
positive as shown,

L MIDDLE SURFACE

Figure 3.0-42, Isotropic cylindrical shell configuration for
thermal stresses and deflections.

NOTE: All quantities positive as shown.

Ng

Figure 3.0-43. Sign convention for forces, moments, and
pressures for thermal *tresses and deflections.
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in cvery case, it is assumed that the cylinder is unrestrained in the axial

dircetion (Nx - 0) .

C. Temperature Distribution.
The supposition is made that no temperature variations occur through
the wall thickness. However, the cylinder may have any axisymmetric surface
gradient for which the product @T can be adequately represented by a fifth-

degree (or lower) polynomial. Therefore, subject to that restriction, the

permissible distributions are of the form

aT = a(x) T(x) . (91)
D. Design Curves and Equalions.

In Ref. 23, Newman and Forray present the practical method given
below to computc the thermal stresses, deflections, and rotations in circular
cylindrical shells which comply with the foregoing specifications. The primary
relationships are expressed in series form and the necessary term-by-term
coefficients can be obtained from Figures 3. 0-44 through 3. 0-49. As indicated
by equation (91), thé product T will be a function of x and, in order to

apply this method, this function must first be approximated by the polynomial

z
y g K
QT = dy+dk +dyt?4 ... d £ = ) d ¢ (92)
z k=0

where ¢ is a dimensionless axial coordinate defined hy the relationship

X
&:-I: . (93)
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Figure 3. 0-44. Functions Fi .

For the purposes of the technique given here, the following inequality must

be satisfied:
Z =5 , (94)

After the coefficients d'k have been established, the thermal stresses
and distortions can be determined by using equations (96) through (98) in
conjunction with the design curves. The constants A, and A, are based on
the boundary conditions at x = 0 (£ = 0) while A; and A, depend on the

boundary conditions at x = L (£ = 1) . The formulas for these four values

are listed in Table 3. 0-9.
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Figure 3.0-48. Shear coefficients.
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Figure 3. 0-49. Hoop-force coefficients.
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TABLE 3.0-9. FORMULAS FOR THE CONSTANTS A; THROUGH A,

Cylinder Boundary
End Condition Constants A
&
Ar e hA d, m, (0)
R
£=0 s
(x = 0) Freo ,
1 v
Mg, (@ +2 5,0
Zl
YRy ), d,m (0)
£=0 Simple k=0
(x = 0) support 7
A) - Z w (0)
k:()dk k
g 1
Ay - - kuodk[wk((]) +Xek(o)]
£=0 o '
(x = 0) Clamped ,
A, - Y dw (0)
kLJ” k k
L
A g Lo hm )
k-0
tE=1 .
Free
(x - L’ rec z
A= =7 ) d |3 a (1) -m (1)
T LS P
L2
Ay = g3z L dm, (1)
=0
£=1 Simple k
(x=1) support z
Ay = - E w, (1)
& M
4 1
m - Lo 300 -w0)]
E=1
Clampoed
(x=1L) e z
Ay - - Z w (1)
"
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The solutions arc based on classical small-deflection shell theory.
Thercfore, it is important for the user to be aware of this when the method is
applied to pressurized cylinders by superimposing the thermal stresses and
deformations upon the corresponding values due solely to pressure; that is,
because of the dependence upon classical theory, the method presented here
cannot account for nonlinecar coupling between thermal deflections and the
pressure-related meridional loads.

In addition, it is assumed that Young's modulus and Poisson's ratio
are unaffccted by temperature changes. Hence, the user must select single
effective values for cach of these properties by employing some type of
averaging technigue.

E. Summary of Equations and Nondimensional Coefficients.

T = dg+dig + dt2 + .., dzgz

]
g
o
_—
(el
[41]
—

Z
‘:" = ATER) 1 A (EA) v AR (E'A) + AT (£'2) + Z dw
k=0
L YA
T 0 = MAF(EN) - AF(8) - AFo(£'2) +AF(EN + ), d0,
k=0
L*M 7
ah. - 2A%[-AF4(EN) + AT (EA) - AsT4(E'A) + A FE'2)] ~ l d omy

b K0

*
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M, = vM, (96)
L' e
o 7 2NIAF(EA) + AF(EN) - AF(5'A) - AF(E'A)1+ ), d g,
aD - k
b k=0
and
LN z
—2 ~ AAYAFER) + AFL(EN) + AFS(E'A) + AF (A - ) dn
aZD l\nk
h k=0
wherc
4j 321 - vgl
A =L 7 ,
(at) 2
Et*
I ——— {
by, 12(1 - »?) (97)
X
£ = 'E ’
and
Lo =1-f
The stresses at any location are given by the following:
A2z (98)

0 —1 —-—
X t9 Tx
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and
N
¢ - ¢ (Con.,)

3.0.8.2 Isotropic Conical Shells,

This scction concerns the thermostructural analysis of thin-walled,
right circular, isotropic conical shells. The organization here is somewhat
different from that of previous sections which cover isotropic flat plates.
This is due tc certain fundamental differences between the physical behavior
of flat plates and shclls, Flat-plate deformations are of such a nature that
it is helpful to group the solutions for stable constructions into the following
categories:

1. Temperature gradients through the thickness

2. Uniform temperatures through the thickness.

Except for the special case of self-equilibrating gradients through the
thickness (NT M'I‘ = 0), the first of these two cases involves out-of-plane
bending which is, of course, accompanied by displacements normal to the
middle surface of the undeformed plate. In case 2, the plate remains flat;
that is, the only displacements occur in directions parallel to the original
middle surface and no out-of-planc bending occurs, The indicated separation
of cases is therefore a logical format for the sections dealing with [Iat plates.
However, the situation is not the same for shell structures. IFor these com-

ponents, there is no need to isolate the foregoing types of thermal conditions.
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This 1s because either type of temperature distribution, in conjunction with
clamped or simply supportced boundaries, will lead to hoth membrane loading
and bending about the shell-wall middle surface. Consequently, for stable
shell constructions which comply with either case 1 or 2, the analysis methods

are given as follows as a single grouping.

Configuration,

The design equations provided here apply only to long (L = 27/AB),
thin-walled, truncated, right circular cones which are of constant thickness,

are made of isotropic material, and satisfy the inequality

x,>3tcotep . (99)

A

It is assumed that the shell wall is frec of holes and obeys Hooke's law.
Figure 3. 0-50 depicts the subject configuration, as well as most of the nota-
tion and sign conventions of intercst.

Boundary Conditions.

The method presented here can be applied where any of the following
boundary conditions are prescnt:
. 1. Free edges
2. Simply supported edges
3. Clamped edges.
All possible combinations of these boundaries are permitted; that is, it is not
required that those at x, be the same as those at x_ . However, in every

A B

case, it is agsumed that the cone is unrestrained in the axial direction.
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)
i HB
NOTE: 1. s* = L-s
2 Hp, Hg My, Mg,
V, and W are axisymmetric.
3. AH coordinates, forces,

moments, and deformations are
positive as shown.

a, Overall truncated cone.

AXIS OF REVOLUTION

b. Positive directions for the stress resultants and coordinates.

Figure 3.0-50, Configuration, notation, and sign convention for conical shell,
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Temperature Distribution.

The following types of tempcrature distributions may be present:

1. A linear gradient through the wall thickness subject to the provision
that the temperature change T need not vanish at the middle surface.

2. Axisymmetrfc meridional gradients.

The permissible distributions can therefore be expressed in the form
T = Ty(s) + To(s) 7 (100)

Naturally, any of the speciual cases for this equation are applicable; that is,
either or both of T,(s) and T,(s) can be finite constants and cither may be
equal to zero.

Design Equations.

A number of methods for solving the subject problem have been pub-
lished, including thosc of Refs. 24 through 27. In the approach presented
here, particular solutions to the governing differential equations are found in
the manner suggested by Tsui [16]. As in Refs. 25 and 28, the complementary
solutions are obtainced by an cquivalent-cylinder approximation. When greater
accuracy is desired, the exact complementary solutions published by Johns
and Orange [29] may be used.

Throughout this scction it is assumed that Young's modulus and
Poisson' s ratio are unaffected by temperature changes. Hence, the user must
select single effective values for each of these properties by employing some

type of averaging technique., The same approach may be taken with regard to
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the coefficient of thermal expansion. On the other hand, the temperature-
dependence of this property may he accounted for by recognizing that it is the
product T which governs; that is, the actual temperature distribution can
be suitably modified to compensate for variations in « . When this approach
is taken, any mention of a linear temperature distribution is actually making
reference to a straight-line variation of the product oT .

In addition, the method outlined here is based on classical small-
deflection theory. It is important to keep this in mind when applying to
pressurized cones by superimposing the thermal stresses and deformations
upon the corresponding values due solely to pressure; that is, because of the
dependence upon classical theory, the method of this manual cannot account
for nonlinear coupling between thermal deflections and pressure-related
meridional loads.

The governihg differential equations for the subject cone are given by

Tsui [16] as follows:

dNT
t - 4 = -—
LY(U) - VIit tan ¢ X
and (101)
dM
1 1 cotg T
' _— oo -
LY(V) ;UDb cot ¢ Db 1-v) ax

where
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D = Et?
b~ 12(1 - %) '
t/2
M, =E [ Tzdz ,
T
-t/2
(102)
t/2
N.=Ea [ Tdz ,
-t/2
and
U = xQx

and L' is the operator,

L'() = cot¢[xd—;x(-gl +%{l--&l] . | (103)

To obtain the desired solution, a three-step procedure is employed as out-

lined below:

Step 1. Find a particular solution to equations (101).

Step 2. Find a solution to the homogeneous equations,
LY(U) - VEttan¢ = 0
(104)

LY(V) +U—1-cot¢ =0 ,
Dy
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such that superposition of these results upon those of Step 1 satisfies the

bouhdary conditions which can be expressed as follows:

Free edge: Qx = Mx =0 .
Simply supported edge: W = M =0 . (105)
Clamped edge: W = V=10 .

The results from this step are referred to as the complementary solution.
Note that equations {104) are obtained by setting the right-hand sides of
equations (101) equal to zcro.

Step 3. Superimpose the particular and complementary solutions,
To accomplish the first of these steps, the functions NT and M’I‘ are first

approximated as polynomials. It is then assumed that the particular solutions

UP and VP can be expressed in the form

P -
U = Cox '+ Cp+ Cyx+ Cox? + Co3+ .. .+ Cnxn

and (106)

n
V = d_x‘l+d +dx+dx2+dx3+...+dx
1 0 1 2 3 n

where n is an integer whose value is a function of the polynomial degree

required for a sufficiently accurate representation of NT and MT . If these

. P p
formulations for N, M., U, and V" are substituted into equations (101)
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and like powers of x are equated, a system of simultaneous equations is
obtained where the unknowns are the various polynomial coefficients. These
equations can be solved for C( ) and d( ) and hence UP and VP . The
associated radial deflection and stress resultants of interest can then be deter-

mined from

P
—P  cos’¢ du P
W= Et sin ¢ (xdx -pU )+aRTm .
QP . U
x  x '
NP = cot ¢ (107
X Qx ’
P d dUP
N () = eote e
M
P dv v P T
and
P M
P 1 dv T
M‘9 Db(sz cot¢ + v dx)-(l-v)
where
, Y2
T, =1 Tdz . | (108)
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The complementary solutions corresponding to the edge-loaded cone of
Figure 3. 0-51 are given as equations (109) and (110). Those corresponding

to the edge-loaded cone of Figure 3. 0-52 are given as equations (111) and (112).

Figure 3.0-51. Truncated cone edge-loaded at top.

= C _ _sing .
LT (AAMA+IiAsm¢) ,
Ab
c 1 .
Vy Tt (21AMA+HAsm¢) ,
Ab
—C _ _sin¢ - . -
=53 9D [AAMAZP(?‘AS) +H, (sin ¢) B(AAS)] ,
ADb
(109)
A S [2a, M, 6{(Ar s) + H, (sin¢) ¢ (A, s)]
“Asz ATATVA A A ’
c

Q= [2a,M, £ (x,s) - H, (sing) 4 (A,8)] ,



Section D

July 1, 1972
Page 188
c
Nx = Qx‘30t¢ ’
NC = WEt +vN_ ,
(7] R
(109)
(Con.)
c - -
MX - = 21A [27LAMA¢(A'AS) +2HA (Bi‘n¢) §(7LAS)] ’
and
C
MO = va
where
A = 4 3(1 -»°
= 7 .
A (RZFAt
R
A
(RZ)A ~ sing '’ (110)
and

D = Et3
b = 12(1 - %)

and ;, -J, -5, and E are the functions ¢, ¥, 6, and £, respectively,

which are tabulated on pages 472-473 of Ref, 11,
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Figure 3.0-52. Truncated cone edge-loaded at bottom.
- C sin
Wy o= ﬁ;g-%; (ABMB+HB sing) ,

o 1
vg' = BiD, (DM, + Hysing)

wC . _sing - * ' - .
v 2Ay D, (ApMpp (Ag8*) + Hy (stng) 6 (Aps™]

C = - 1 A * Al ®) 1
v _T_2AB Db [2ABMBB (ABa ) +HB (sin ) © ()“BF' Vi
C E - v - m »
Q, tszMBt (ABS"') Hy (sin ¢) :p(aBs )}

N':Q‘cotqb ,

Noc : -‘—%—t LN, (111)
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1
|

M

C - -
T [zABMqu (Ag8" +2 Hy (sing) T (J\Bs*)] ,

and
C
M, = vM, (111)
(Con.)
where
4
N 3(1 -‘uzzl '
Do (32) Bt
R
(R), =—2
2B sin¢ ’ (112)
and
3
D = Et

b 12(1- v?)

and 9, ¥, 6, and { are the functions ¢, ¥, 6, and ¢, respectively,
* which are tabulated on pages 472~473 of Ref. 11,
After the particular and complementary solutions have been super-
imposed, the final thermal stresses can be computed from the following

formulas:

o, =@ M +T and o, == M +— . (113)
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3.0.8.3 [Isotropic Shells of Revolution of Arbitrary Shape.

The discussion presented here is concerned with approximate smali-
deflection solutions for thin-walled shells of revolution having otherwise
arbitrary shapes and made of isotropic material. A typical configuration,
along with pertinent notation and sign conventions, is shown in Figure 3. 0-53.
It i‘s assumed that the shell wall is free of holes and obeys Hooke's law. The
temperature distribution must be axisymmetric but arbitrary gradients may
be prescnt both through the wall thickness and in the meridional dircction.

To determine the thermal stresses and deformations for the structures under
discussion, the following sets of cquations are available:

1. Equilibrium equations

2. Strain-displacement relationships

3. Stress-strain relationships.

In principle, together with prescribed boundary conditions, these formulations
should provide a sufficicnt basis for the development of closed-form, small-
deflection solutions to the subjcct problems., However, it will often be
extremely difficult, if nol impossible, to achieve such solutions. ‘Thercfore,
numerical integration procedurcs in conjunction with a digital computer pro-
gram are frequently used to achicve the desired solution. On the other hand,
still another approach may be taken by using approximations such as those
cited by Fitzgerald in Ref. 30 or Christensen in Ref. 31. Since these approxi-

mations avoid the need for sophisticated mathematical and/or numerical
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MIDDLE
g SURFACE
-
ry w =2
o) s NOTE: r, r,, and ¢ are
g z positive as shown,
=

fo = rp sing

a., Overall shell of revolution,

I

z

: —x
>

wd

o

>

wu

o
(™

()

@

x

<

y t _
MIDDLE do
SURFACE
NOTE: x, y, and z are
positive as shown.
b. Positive directions for forces, ¢. Element of shell wall.
moments, pressures, and
coordinates.

Figure 3.0-53, Configuration, notation, and sign convention for
arbitrary shell of revolution.
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operations, they are well suited to a2 manual of this type. It would therefore
be desirable to prcpare a section which outlines detailed procedures along
these lines. However, from a brief study of Refs. 30 and 31, it was concluded
that they should be thoroughly explored before specific recommendations arc
made. Consequently, in the following paragraphs only the related broad con-

cepts are presented.

The method of Ref. 30 rélies heavily on the following set of equilibrium

equations, which, except for the term involving m, , are derived in Ref. 11:

¢
i(NI‘)—Nr cosp-r Q +r.r. Y =20
dg "¢ 0 01 0% 01 ’
N, +Nr sing+> (Qr,) +Zrr, = 0 (114)
¢ 0 01 dp P 0 170 ’

and

"(% (M¢r0) - MOrl cos ¢ - Q¢ rer + m¢r1r0 =0

These expressions are used in the following manner:

1. First the assumption is made that membrane forces
N = N =N (115)

and bending moments
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M, =M =M (116)

arc present which completely arrest afl thermal displacements.

These forces and moments simply furnish a starting point for the com-
putations and do not represent the actual values which will be determined later
in the procedure.

It follows that

e 2
N_ = -7—— aT dz (117)
R -2 i,
and
t/2

_ _E_ . :
My = o) -t/:g aTz dz . (118)

2. In general, the above type of force and moment distribution will not

be in equilibrium unless one or more of the following is nrptisd:

Q¢ = (Q¢)R ‘s
Y = YR , (119)
Z = zR ,

and
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At this point, in order to achieve an approximate solution, Fitzgerald [30]

makes the assumption that
= = 0 120
Q, = Q) (120)

and justifies this practice by performing an order-of-magnitude study of the
error introduced. Then, proceeding with the analysis, equations (120) and
(115) through (118) are substituted into the equilibrium relationships (114) to

R’ ZR' and mp .

arrive at simple formulas for Y
3. Recognizing that the actual shell is free of any of the above types of
loading, it is necessary to restore the structure to this state by application

of the following:

-Y ;-2

R R‘, -m .

R

This is done in a two-step proccdure as outlined below.

4. The expressions

and | (122)

Z = -2

are inserted into the first two of the equilibrium equations (114) while the

assumption that |
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Q = o (122)

is retained. The resulting equations are then solved for N, and N 5 From

e
the stress-strain relationships, the corrrnrording gtrai=s con he detormined.
After this, the strain-displacement formu'ati-na may b2 naed to expreas the

related rotations and deflections of the s»h- M w ' in tormo ~f Nn on By -

The bending moments M_ and M¢ ey thos ba astoT ek ad foom the equations

0
M, = -D (x,+ vxq,)
and ' {107}
M¢ = - Db(x¢ + vxo)
where
3
D Et (124)

b~ 12(1- ) °

while x o and yx 6 are the curvature changes cf the hoop and meridional fibers,

respectively.

5. One may now proceed to substitute
m, =-m (125)

into the third of the equilibrium equations (114), along with the assumption
that

M =M =20 . (126)
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Simple traneformation then yields a formula for Q, which, together with

¢
equations (126) and the first two of (114), leads to simple expressions for

N and N interms of M_ . The use of equations (126) in this phase of

6 ¢ R
the development is justified by Fitzgerald {30] on the basis of an error-
magnitude study. Using the stress-strain and strain-displacement relation-
ships, practical formulations can be dcrived for the rotations and displace-
ments associated with the membranc loads N 0 and N o obtained in this step.

6. The final approximate values for the membrane loads, bending
moments, rotations, and displacements are found by superposition of appro-
priate values from steps 1, 4, and 5. The stresses due to these membrane
loads and bending moments must be augmented by those stresses associated
with any self-equilibrating temperature distributions which exist through the
thickness.

To focus attention on the general concepts involved in Fitzgerald's [30]
approach, no mention is made in the foregoing steps of the need to satisfy
prescribed boundary conditions in the problem solution. Therefore, it might
now be helpful to note that, for this method, it is probably best first to obtain
results under the assumption that no external constraints are presen‘t.
Following this, edge forces and/or moments may be superimposed which
enforce the required conditions at the boundaries.

The general philosophy behind the approach of Christensen {31] is

very similar to that of Fitzgerald, although the details are quite different.
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Christensen also relies heavily upon the equilibrium equations (114) but, for
pure thermostructural problems, he makes no use of the loadings Y, %,
and m o * Hence, thesc quantities are taken equal to zero throughout the

entire analysis, which is performed in the following manner:

1. First the assumption is made that

M, = M¢ = Mp (127)
where
E tjz
M_ = -7—— aTzdz . (128)
R (1-v) t/2

Here again, these moments simply furnish a starting point for the computations
and do not représent the actual values which will be determined later in the
procedure. These moments are inserted into the equilibrium equations (114).
The third of these equations is then combined with the other two and two equa-
tions in the unknowns N 0 and N s are obtained.

2. By using the stress-strain and strain-displacement relationships,
the two equations from step 1 are rewritten in terms of the temperature dis-
tribution and the middle-surface displacements v and w, where v is

measured in the meridional direction and w is taken normal to the middle

surface,
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3. The two equations from step 2 are combined to arrive at a single
formulation in terms of v and the temperature distribution.

4. The equation from step 3 is then solved subject to the boundary con-
ditions at the shell apex. This is accomplished by assuming that v can be
expressed as a polynomial and then calling upon the method of undetermined
coefficients. The resulting expression for v must then be substituted into the
appropriate equation from step 2 to obtain a solution for the displacement w .

5. From Timoshenko [11], the bending moments M 0 and M s which
are associated with the displacements v and w can be determined.
Christensen [31] refers to these as corrective moments and, if they are not

small with respect to M_ , an iterative process must be used whereby the

R
initially assumed moments are successively revised. However, the study
reported in Ref. 31 seems to indicate that the first cycle will often be suffi-
ciently accurate for most engineering applications.

6. From the stress-strain and strain-displacement relationships, the
membrane loads NO and N 5 due to v and w can now be found.

7. The final approximate values for the bending moments, membrane
loads, and displacements are found as follows:

a, Final M_ = M_ + corrective M

e R ]
b. Final M, = M_ + corrective M_ .

? R ? (129)
¢. Final NG and N¢ = obtained from step 6.

d. Final v and w = obtained from step 4.



Section D
July 1, 1972
Page 200

The total approximate values for the stresses are obtained by superimposing
those associated with the final bending moments, final membrane loads, and
any self-equilibrating temperature distributions through the wall thickness.

To focus attention on the general concepts proposed by Christensen
(33}, no mention is made in the foregoing steps of the need to satisfy pre-
scribed boundary conditions at locations removed from'the apex. Therefore,
it might now be helpful to note that, for this method, it is probably best first
to obtain results under the assumption that no external constraints are
present at such positions, Following this, edge forces and/or moments may
be surerimposed which enforce the required conditions at the boundaries.

The foregoing approaches are only two of a number of possibilities for
the subject problem and can be used to chtain approximate values without the
need for sophisticated mathematical and/or numerical operations. However,
solutions can also be obtained by the use of existing digital computer programs,
many ¢ which uge either discrete-clo~nont ox finito-difforence methgds, Such
programs are probably the best appreonsh for ekinining rapid, accurate sclu-
tiorz. However, to retain a physical fesl for the praoblem, it would be helnfnl
. to convert temperature distributions into eenivolert mechanical loadings, such
as was done for isotropic circular cylinders. It is recommended that future
efforts include work along these lines to arrive at the enuivalent pressures for

shells of revolution having arbitrary shapes.
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I. Sphere Under Radial Temperature Variation.

A. Hollow Sphere.
Inside radius =a .

Outside radius =b .

r
1
r3a-f Trzdr—FéfTrzdr ,

Tor T 1-v [ (®° - a%)
b r
ok | ad+2rd 2 1 b,
P90 —0'¢¢ R [T Ry df Tr dr+r3af Trédr - T R

b r
o f1+v) 2 a® 2 b? 2
u _a(l-v)b3-33 ;z'rfTr dr+;7JTr dr

(1+ )

b
+ 21-29)r fTrzdr] ,
a

T(r) = t, = constant,

u = aTyr .



Section D
July 1, 1972
- Page 202

B. 8olid Sphere,

X .
_2aEf 1 24, 1 2 .
crr_l—‘v(-l;’ (if'l‘rdr r“dfTr dr) ’

aE [2 b 1 [
= - z —— 2 -
Too = O T -BsdfTr dr+r36f'l‘r dr - T} ,

) f e (@) o]

b
2aE] 1 2 T!O!
a_(9) -006(0) = g,,(0) l-v{ﬁdf Trédr - = ] ,
T(r) = T, = constant ,
o =0 =g, =0 ,

u = aTyr .



