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3.0,6.2 Statically Indeterminatce,

The forces in the bars of a statically indeterminate pin-jointed truss
are not zero, but are casily determined from the results of the previous
paragraph,

3.0.7  Plates.

The analysis of plates presented in this section is based on the
following classical theory of plates assumptions:

1. The material is isotropic, homogeneous, and linearly elastic.

2. The constant thickness of the plate is small when compared with its
other dimensions.

3. Plane sections, which before bending are normal to the median
plane of the plate, remain plane and normal to the median. plane after bending.

4, The deflections of the plate are of the order of magnitude of the
plate thickness.

Solutions are given hercin for circular and rectangular plates with
various boundary conditions and temperature distributions.

Analysis techniques for plates made of composite materials are given
in Section F,
3.0.7.1 Circular Plates.

1. Temperature Gradient Through the Thickness.

A, Configuration.
The design curves and equations presented here apply only to flat,

circular plates having central circular holes (Fig. 3.0-14). The plates must
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be of constant thickness, be made of an isotropic material, and obey Hooke's
law. Curves are given which deal with bending phenomena for a/b ratios of
0.2, 0.4, 0.6, and 0. 8 and are based on the assumption that v = 0,30, These
plots cover only '1 portion of the boundary conditions considered in connection
with bending behavior. The remainder of these conditions, as well as all the
membrane solutions, are given as closed-form algebraic equations which are
valid for arbitrary values of Poisson's ratio and the inner and outer radii of

the plate. When the ratio a/b approaches unity, the member is more proverly

identified as a ring.

Ng
y Mo
b
Mr
- . N, N,
a L]
_ _ Ny
' d POSITIVE DIRECTIONS OF THE
} STRESS RESULTANTS
st o \- e T,U
: , \__ MIDDLE SURFACE -
Ti) ’

NOTE: r,0,2z,u,v,and w
w b
are positive as shown.

Figure 3.0-14. Circular flat plate.
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B. Boundary Conditions.
Solutions are given for various combinations of the following boundary

conditions for bending and membrane behavior, respectively.

Bending Phenomena.

1. Clamped, that is,

W

Wr:_I—_-:() at r =b and/or r - a

2. Simply supported, that is,

3. Frece, that is,

M =0
T
at r =b and/or T a .,
oM oM
a0
ar 0

Membrane Phenomena,

1. Radially fixed, that is,

el
il

v =0 at r = b and/or r = a

2. Radially free, that is,
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C. Temperature Distribution.
Arhitrary temperaturce variations may he present through the plate
thickness. However, it is required that there be no gradients over the surface.

Hence, the pcrmissible distributions can be expressed in the form
T = T(z) .

D. Design Curves and Equations.

In Ref. 2, Newman and Forray present the simple method given here
to determine the thlermnl stresses and deflections for stable plates that satisfy
the foregoing fcquiremcnts. This technique is based on classical small-
deflection theory and is an extension of the procedures published in Refs. 3
through 5 by the saine authors. To perform the analysis, use is made of a
number of equations»and design curves. These are provided in the summary
whtch follows,

It is assumed that Young's modulus and Poisson's ratio are unaffected
by temperature variations. On the other hand, the temperature-dependence
of the thermal-expansion coefficient can be accounted for by rccognizing that
it is.tbc product a1 which governs; that is, the actual temperawure
distribution can be suitably modified to compensate for variations in .

E. Summary of Equations and Curves.
w! azMT

W= o m———
_ 2
Db(l vé)
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N M
1 T 12z - T EaT
O =-t_[l\:[r-|-(1--v):|+ t* [Mr+ﬁ-v)]—(l-v) ’

and
_lin . Ny Jlaz o My __EaT
% Tt o (1-v) ts 0" (1-v) (1-v)
wherce
Et®
Dy, 12 (1 - v?)
t/2
M, = Ea f Tz dz
-t/2
t/2
N, =B [ Tdz ,
-t/2
- . '
M S2mMoM
T 1
M, 12M M,
- '
N = N.N'
and
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The values for w', Mr' , and M 6" are obtained either from Table 3. 0-5
or Figures 3.0-15 through 3. 0-19. When the figures are used, Poisson's
ratio must be taken to be 0.3 throughout the analysis of bending phenomena.
When Table 3. 0-5 is employed, there are no restrictions on v . Also note
that, in most of the plots, the parameters include multiplication factors. The
values for Nr' and N' are obtained from Tuable 3. 0-6 and are also valid for
any value of Poisson's ratio.
'F. Linear Gradient.

For the special case of a linear temperature gradient through the

thickness for a solid plate represented by

Tg+ Ty, Ty - T

2 5 z

T(z) =

the following solutions apply.

Unrestrained Solid Circular Plate.

The plate becomes curved and fits a spherce >f radius inversely
proportional to the difference in surface temperatures and direct.y
proportional to the thickness.

Clamped Plate.

w =0
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TABLE 3.0-5. NONDIMENSIONAL PARAMETERS FOR
BENDING PHENOMENA

" Boundary Conditions

M? M/!
Outer Edge| Inner Edge w! r 6
1fr® _\ (Relative to
Free Free 2 (? - 1) Inner Boundary) 0 0
Clamped Clamped 0 1 1
P P 12(1- ) | 12(1- )
Simply , 1 (I‘z bZ)
10 3] -_— - - ™5 0 0
Supported ree 2 \n¢ a?
Simply 1 ( rt )
Free Supported 2\ n¢ 1 0 0

TABLE 3. 0-6. NONDIMENSIONAL PARAMETERS FOR
MEMBRANE PHENOMENA

Boundary Conditions

: 1 t
Outer Edge Inner Edge Nr N

Radially Free | Radially Free 0

Radially Iixed]Radially F'rce

Radially Frec |[Radially Fixed

Radially Fixed|Radially Fixed — i i
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Figure 3.0-15. Nondimensional parameters for bending phenomena; outer edge clamped
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Figure 3.0-18. Nondimensional parameters for bending phenomena; outer edge
simply supported and inner edge clamped (v=0. 3).
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and
o _al(r, - 1)
el T % 2(1-v)
max max
Simply Supported Plate, -
0'r =0 0 =0
and
w = ;‘l‘_(_l_)x_t“_T_ul (a? - r?)
I1. Temperature Difference as a Function of the Radial Coordinates.

A. Clamped Plate.

For the variation of temperature, assumed to be linear through the

thickness, and the variation with r given by the monomial,

Z K
T = I AKr +C

whare Ax and c¢ are constants.

TD(a) = AKa ,
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(1 +v)alaT_(a) K+2
R EECRGER

Eh’aT_(a) K
M = D’ (l') . 1+v
r 12(x + 2) a 1-v

and

Eh?aT_(a) K
D 1+yp
My = THcr 2 {‘“”(‘E) 'r*] :

where TD is the temperature diffcrence between the surfaces.

Curves of nondimensional deflection and moments are presented in
Figures 3. 0-20 through 3. 0-22 fdr k=1,2,...5 . Superposition may then be
used for TD given by polynomials in r . The determination of a polynomial

describing the radial variation of TD can be obtained in the same manner as

shown in Paragraph 3.0.2.3.

B. Radially Fixed or Radially Free Plate.

Configuration,

The design equations provided here apply only to flat, circular plates
which may or may not have a central circular hole. The plate must be of
constant thickness, be made of an isotropic material, and obey Hooke's law.

Formulas are given which cover the range

0 = < 1

a
b
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whix +2)2
ala Tp (o}

Figure 3.0-20. Nondimensional deflection.
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Figure 3.0-21. Nondimensional radial moment.
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Figure 3.0-22. Nondimensional tangential moment.

T oW N



Section D
July 1, 1972
Page 96

As this ratio approaches unity, thc member is more properly identified as

a ring.

Boundary Conditions.

Solutions are given for each of the following types of boundary

conditions.

1. Radially free; that is,

and

if hole is present.
2. Outer boundary radially fixed (if hole is present, the inner

boundary is radially free) ; that is,

and

g = @ = 0 at r - a

if hole is present.

Temperature Distribution.

The supposition is made that the temperature is uniform through the

thickness. waever, the plate may be subjected to a surface distrioution
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which has an arbitrary radial gradient but no circumferential variations.

Hence, the permissible distributions can be expressed in the form

T = T(r)

Design Equations.

In this section, it is8 assumed that Young's modulus and Poisson's
ratio are unaffected by temperature changes. Therefore, the user must select
single effective values for each of these properties by using some type of
averaging technique. The same approach may bhe taken with regard to the
coefficient of thermal expansion. On the other hand, the temperature-
dependence of this property can be accounted for by recognizing that it is the
product T which governs; that is, the actual temperature distribution can
be suitably modified to compensate for variations in «.

The design equations are given in the summary which follows and are
based on classical small-deflection theory. The expressions for the radially
free plates were taken directly from Ref. 1. The cquations for plates with
radially fixed outer boundaries were derived by superposition of the free-plate
formulas and the relationships given in Ref. 6 for cylinders subjected solely
to external radial pressure. Depending upon the complexity of the temperature
distribution, the required integrations may be performed either analytically

or by numeriecal procedurcs.
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Summary of Equations.

Solid Plates {No Central Hole).

1. Radially frec boundary:

{1 b . T |
o = aE b f Trdr-;—z fTrdr ,

o o)
1 b ; F
Oy = oE -T+B-"2 fTrdr+-r-2- fTrdr ,,
Y (4]
and

r b
u = -‘;—"- [(1 + V) “f Trdr (1 - v)(-bz)2 f Tr er

These three equations are indeterminate at r = ¢ , However, by the

application of 1' Hospital's rule, it is found that [1]

li

@) = (o)

b
1 1
aE [ Tr dr - =(T)
r=0 r=0 [b of 27 =0

and °*

r=
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2. HRadially fixed boundary:

1 P 1 [ 2 b
g = aF ?Of Trdr--pof Trdr-mo Tr dr ’

r b
- 1 1 2
0'9 = aFE —T+b2 Of Tr dr+r2 of Tr dr-—mof Tr dr ’

and
o < r\? b
u= = (1+v)0f Trdr—(1+v)(g) Of Trdr { .

These three equations are indeterminate at r = 0. However, by the application

of 1' Hospital' s rule, it is found that

b b
- - 2 23
@) =) =eE|FH Of Tr dr -4 of Trdr-5T

u =0
r=(

Plates with Central Hole.

1. Both boundaries radially free:

aF [r2- af b d
o, = AT qf Tr dv - af Trdr | ,
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aE [ r? + a2
o, a—;y(-l;r——y f Trdt+af Trdr Tr? ),

and
o r (1-v)r? +11+1§a2 p
o =2 (1+v)f’1‘rdr+ .2 fTrdr
a a
2. lnner boundary radially free and outer boundary radially fixed:
aE | r’- a? b? a’
L =‘;r[ f Tr dr - f Trdr} +(crr) [ (1'1-2 ,
aE rz-raz 3
% = T fTrdr+fTrdr Tr?
a
b? a?
+(0' ["‘5‘-——[ (1+—'§)] R
r)rab b~ a r
S rT dr (1-v)r?+(1+v)at fb 4
u = (1+v f rdr+ 7 - a9 Tr dr
a a
+ (crr) [(1 -yr +-(1—:;—l)) az] ,
where

aE 1

b
(crx)rzb = -‘bT(bza-az ‘V) {(14—1;) fTrdr

b - al a
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4 {1~ v)b*4 {1 +p)a? fb’I‘rdr
(b* - a%)
a
III.  Disk With Central Shaft.
Boundary conditions for this plane-stress problem are u r=a = 0
= 0.
rr’
r=a
’ n
T=T1 (b - ’
Ter _ 1
ozETb 2
Y00 1
E - b
o Tb 2
rr
aETb r=n
J
*
%00 A (1 ﬁ) [ y
- - E ] 2 ’
*ETy | pea b Y P ) 15 (1)
%
o ET 4T " pt 1-v\a? | ~ '
b ix=b b 1+(1+v)b2
* - 2 frT dr = ZTb r—-an[(n+1)r+a]
N rz—aza T = v a\b-a (n+1)(n+2)
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where
b 2T
x _ _ 2 _ b [{n+1) b +a]
Ty = - af Trdr = 2 +b (n+1)(n+2)
L. o
Curves showing the variations of oET and oET with n
b|{r=a blr=b

and a/b are given in Figures 3. 0-23 through 3. 0-25.

0.8

-0.7

os S
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L oa :/
- ///

0.1

O unbDF

\)
\Q\.

0 1 3

N

Figure 3.0-23. Variation of tangential stress at outer boundary with n
and a/b for a disk on a shaft.

Additional cases that may be obtained from Refs. 7 and 8 are as follows:

1. Circular plate with asymmetrical temperature distribution

2. Circular disk with concentric hole subjected to asymmetrical
temperature distribution

3. Circular plate with a central hot spot.
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boundary of disk with n and a/b for a disk on a shaft.
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3.0.7.2 Rectangular Plates,

I Temperature Gradient Through the Thickness,

A. Configuration.

The design curves and equations provided here apply only to flat, rect-
angular plates which are of constant thic_:kness' and are made of isotropic
material, The two long cdges of the plate are supported by flexible beams.

It is assumed that both the platc and the support beams are free of holes and
that no stresses exceed the elastic limit in either of these members. The
design curves cover aspect ratios b/a of 1.0, 1.5, and 3.0.

B. Boundary Conditions,

The edges x=0 and x =a are elastically supported by beams having
equal flexural stiffnesses Eblb . Both beams are simply supported at their
ends (Fig. 3.0-26) and arc free to undergo axial expansions or contractions.
These memhers offer no constraint to cach of the following plate deformations:

1, Edge-Rotation

2. In~Place Edge-iMsplacements | u and v.

The beams resist only transversc deflections w . The edges y =0

an.d y =b are simply supported; that is,
w =My =0

along these two boundaries,
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ARBITRARY
ONE-DIMENSIONAL
TEMPERATURE
DISTRIBUTION

;
=
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<
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NOTE: x, y, z positive
z shown.

Figure 3.0-26. Rectangular flat plate with one-dimensional
temperature distribution over surface.

C. Temperature Distribution.
Separate coverage is provided for each of the following temperature
distributions through the thickness:
1. Linear gradient T =aj + afz
2. Arbitrary gradient T =1f(z) .
It is assumed that there are no temperature variations in directions parallel
to the middle surface of the plate.
D. Design Curves and Equations.
In Ref. 9, Forray, et al., present the simple methods given here to

compute thermal stresses and deflections at virtually any point in flat,
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rectangular plates which comply with the foregoing specifications. These
techniques consist of a varicty of equations and curves, all of which are bascd
on the conventional small-deflection theory of plates. It is assumed that
Young's modulus and Poisson's ratio are unaffected by temperature variations.
Hence, the user must select single effective values for each of these properties
by employing some type of averaging technique. The same approach may be
taken with regard to the coefficient of thermal expansion. On the other hand,
the temperature-dependence of this property can be accounted for by recognizing
that it is the product T which governs; that is, the actual temperature distri-
bution can be suitably modified to compensate for variations in @ . When this
approach is taken, the user must adopt the viewpoint that any mention of a
linear temperaturc distribution is actually referring to a straight-line variation

of the product aT .

Linear Temperature Gradient.

For a linear temperature gradient expressed by

and with

Tp = T(z=t/2) _T(z=t/2) ’

E t3

D = —L2
b 12(1 - v?)
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and

_ 2
4Dba TD(l ve)
t

The transverse deflections are expressed by
— A A
w = W(X.Y) +w (an) +w (a" x,y)

where

z o 2| oonnr (b
it ) (1 35) S8y M [‘“’Sh 2 (""z‘)]
: |

W(x,y) = ot

a i
n=1,3,... ndcosh 22
a
A T 2
_ mrx mnrx pt mnra mna mnx
w {x,y} = Z G "[ coshM—(~+-coth——)sinh—~] sin W
m-1,3,... *t° b\l b b b b
and
_4M “b{'l 1 sinh T2
L IS U Y .9 b
c x ma

mr¥ mra mra mna 2 Eblb
mr mra 3 sinh BIR _qopy Ry 2 2 {mra
Db(b ) {(cosh b ! {3+ sinh b {1-1) ol e B mr sinh (“E_) 2

The component W(x,y) is the deflection where all edges are simply supported

The bending moments Mx and My can be obtained by substituting the

final deflection relation into the following equations:
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M = 02w I;E)zwAraTD',]_‘» )
X h] ax* 8y2 t v
and
2 ] (\'T
J°w d-w 1) \
M = =D ; -
My = -Dyiggr v T ()

Forray ct al. [9] uscd these deflection and moment expiressions to
generate the design curves of Figures 3. 0-27 through 3.0-35, where it is
assumed thal v - 0,30 . Some of the curves are discontinued near the corpers
of the plate x/a = 0, y/b =0 since the conveptional the iy hreaks Jown at,
these locations. Certain of these results also appear in Ref. 10, where a
different plotting format was used. In addition, the latter rcference includes
supplementary curves for the cuse where Eth/Dbb ~ o , This corresponds
to the condition of simple support on all four cdges.

Because of symmetry about the centerlines (x = 4/2, y =h/2) , it was
neccessary to show only one quadrant of the plate in Figares 5. 0-27 drough
3.0-35. The assortment of curves covers a wide range of values in the vari-
ables and should accommuodate most practical problems of this particular class,
For any situations where the plots prove to be inadequate, the cquationg cun be
used to obtain solutions, Howcver, a considerable amount of rather routine
mathematies would be rcquirgd in making the necessary substitutions to ehuain

bending-moment equations in series form. Onee these were available, it might
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Figure 3.0-27. Nondimensional deflections for a plate with two
opposite edges elastically supported and the other
two edges simply supported; b/a = 1.0, v = 0. 30,
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Figure 3.0-28. Nondimensional bending moments Mx/ M for a plate

with two opposite edges elastically supported and the other
two edges simply supported; b/a=1.0, v =0.30.
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Figure 3.0-32. Nondimensional bending moments My/M for a plate
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Figure 3.0-34. Nondimensional bending moments Mx/ M for a plate

with both long edges elastically supported and the short edges
simply supported; b/a = 3.0, v = 0.30.
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simply supported; b/a = 3.0, v = 0, 30.
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prove profitable to develop a simple digital computer program to perforn the
summations embodied both in the defleetion and moment expressions.

It is important to note thai the peak moments always occur al the simply
supported houndarics and are oriented so that the corresponding peak values
for the stresses T and rry act paraliel 1o the edges. The maximum moments
can be computed from the following [11]:

aT. (1-v2)D aT
D b L
p

Mx( max) t 12

These moments result {rom the boundary condition, which demands that w = 0
along the simply supported cdges. This imposes a straightness constraint that
complctely suppresses the thermally induced tendency to develop curvatures in
vertical planes which pass through these cdges.

Arbitrary Temperature Gradient [T = {{z)].

The following procedurcs may be used for the analysis of plates having
arbitrary temperaturc distributions through the thickness T = (z):
1. The deflections w and bending moments Mx and My may be

obtained from the cquations and figures given for the linecar temperature

gradient, provided that T,  is replaced by T* , which may be computed from

D

the following:

t/2
™ = = f Tz <z
-t/2
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2. The normal stresses x and y may then be established from the

relationships

and
E w
12z p (— T*z )
c =M + T+ -T
y y(ﬁ) (1-v) t
where
- 4, Yz
T== [ Tdz .
d
-d/z
1L, Temperature Variation Over the Surface.
A. Edges Free or Constrained Against In-Plane Bending.
Configuration.

The design equations provided here apply only to flat, rectangular plates
which are of constant thickness and are made of isotropic material. It is
assumed that the plate is free of holes and that no stresses exceed the elastic
limit., The equations are applicable only for large values of the aspect ratio

a/b .
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Boundary Conditions,

Consideration is given to cach of the following two types of boundary
conditions:

1. All edges are frec.

2. Plate is fully constrained against in-plane bending but is otherwise
completely free.

Temperature Distribution,

The supposition is made that no thermal gradients exist through the
plate thickness butl a one-dimensional, arbitrary variation occurs over the
surface; that is, the temperature is a function only of either x or y.

Design Equations.

It is assumed here that Young' s modulus is unaffected by temperature
changes., Therefore, in applying the contents of this section, a single effective
value must be selected for this property by using some type of averaging
technique. On the other hand, the results arce presented in a form such that
the user may fully account for temperature-dependence of the cocfficient of
thermal expansion « .

The appropriate stress formulation is developed as follows for the
problem which was illustrated in Figure 3.0-26, which shows a rectangular
plate with a temperature distribution T(y) and free of any external constraints,

The results may be obtained by first imposing a fictitious stress distribution
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o, on the edges x =+ a/2 such that all thermal deformations are entirely

suppressed. It follows that

‘UA = -C!ET(y)

These stresses ‘may be integrated over the width b and the thickness t to
arrive at the force

b/2

P, = -Et aT(y) dy
A -b/zf |

and the moment about the z axis

b/2
MA=-Et f aT(y) ydy .
-b/2
Since, at this point in the derivation, it is assumed that no constraints are
present, the actual plate must be free of forces and moments on all edges.

To restore the plate to such a state, it is necessary to superimpose both a

force P_ equal and opposite to P, and 2a moment M_ which is equal and

B A B
opposite to M A Hence,

PB = -PA
and

M, = -M .
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The stress corresponding Lo I’I’ is casily found to be
>

T

B B b/2

I
o, =5 T oTT = f aT(y) dy
Pp A bd b _ J

The stress corresponding to MB is

MBy IZMBy 12y b/2
UM = I = th = b3 E j OJT(y) y dy
B zZ -b/2

It should be noted that the procedure being used constitutes an application of

Saint- Venant' s principle. Hence, the stresses o and o will be
PB MB

accurate representations only at sufficient distances from the edges x = +a/2 .

Subject to this limitation, the actual thermal stresses at various points in the

plate may be computed from the relationship

o =0, to, +0
A 71 B MB
or
" h/2 12y h/2
g = - a I'T(y) i f «T(y) dy + b3 E f aT(y)y v

~h/2 ~b/2

The foregoing discussion has been restricted to those cases where tne

temperature varies only in the y direction. Howover., the same method



Section D
dJuly 1, 1972
Page 123

can be used to arrive at the following expression when T 1is a function only

of x:
E a/2 12x a/2
¢ = -aET(x) + s a T(x) dx+-a—l-3— E f aTx)x dx .
y -a/2 -a/2

Complex one-dimensional temperature distributions may often be encountered
which make it difficult to perform the integrations required by the preceding
equations. In such instances, numerical techniques can be used whereby the
integral signs are replaced by summation symbols.

The equations were derived for rectangular plates having no edge
restraints. However, thesc relationships can easily be modified to apply when
the plate is fully constrained against in-plane bending but is otherwise
completely free. This is achieved simply by deleting the final terms from
each equation,

Summary of Equations,

1. All Edges Free.
T = T(y) >
E 7/2 12 ?/2
o, = -aETl) +¢ aT(y) dy +=F E aT@)y dy

-b/2 -b/2

T = T(x) ,
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and
g Y2 12x a2
g = -aET(x) +— f aT(x) dx + =5 E f aT(x)x dx
y a a
~-a/2 -a/2

2. Plate Fully Constrained Against In-Plane Bending But Otherwise

Completely Free,

'r - rr(y) s
. h/2
vy l" )
o= ~a ET(y) ty f wT(y) dy ,
-bh/2
T = T(x) ,
and
a/2
oy = —a T(x) L : :/ w'T(x) dx
~a/2
B. Idges Iixed.
Configuration.

The equations and sample solution provided here apply only to flat,
recizangular plates which arc of constant thickness and are made of isotropic
material (Fig. 3.0-36). It is assumed that the plate is frec of holes and that
no stresses cxceed the clastic limit. The ccuations are applicabic to any

aspect ratio a/b .
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NOTE: x,v,z,u,v, snd ware
potsitive as shown,

Figure 3.0-36, Rectangular flat piate: all sides fully constrained
against in-plane displacements.

Boundary Conditions.

Consideration is given only to plates having all sides completely
restrained against in-plane displacements (fixed) ; that is, both of the

following conditions must be satisfied by each edge:
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-and

v: 0 ..

Temperature Nistribution.

The supposition is made that no thermal gradients exist through the
plate thickness; However, temperature variations over the surface mayv be
arbitrary.

Design Equations.

As noted previously, a so-called body-force analogy exists between
certain isothermal problems and thermal stress problems for flat plates
which experieﬁce no transverse displacements w . This method is derived
in a number of different references [12, 13, 14} and is frequently referred to
as Duhamel's analogy. In Ref. 15, this approach is used to solve the
broi)iem vbtiaing freateq here. Assuming that buckling does not occur, solutions
in series form were obtained for the in-plane stresses Oy Uy and Txy
The series coefficients can be obtained by solving the following simultaneous

equations:

. glab |/m\}! 1-v ma py
_— - Z 1 B 0y B 0y oy
Amn 4 (a) 2 b) +2(1+v) anl qul pq (p*-m?) (n*-¢*)

sm—m dx dy

b b 8T
=-a(1+v)ff7)— b
0 0
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and

anlr;:!" [(E)2 +l§_ (") } *21+) Z Z pq(pz-nl:?;(’:’- 7)

P=1 g=1

a
= -a(l +v) f ff-sinmsm—gxudy ,
. 0

where the indices m, n, p, and q each take on the values 1,2,3,...
subject to the restriction that those values of p and q must be deleted for
which (m £ p) and (n = q) are even numbers.

For any given temperature distribution, the right-hand side of the
preceding equations must be integrated. In many cases it will be desirable to
perform these operations by numerical procedures. Thé integers m, n, p,
and q may be assumed to vary from unity to any value N . This will result
in 2N? equations involving N? coefficients Amn and N2 coefficients an .
This set of equations can be solved simultaneously to determine appropriate
values for the coefficients, Once this has been accomplished, the stresses

at any point may be computed from
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E N nn mux nry
. Y Al v
_o'y 1.2 2 2 ny B sin"*-—“-8 cos b

m=1 n=1

N N
. " I’ mmx nny Eo
+v L 24 . Amn coSs sin i ” Tx,y) ,

m=1 n=1 a 1-
and
| N\ Nw nr mrx nny
, = =4 RLLLL
Txy Z 2, Amn b sin 2 08T
m=1 n=1

Then the strains at any point can be dcetermined from
¢ L (o -va)
oYX y' !

1
¢ i {oy - mx) .

and
. Txy
3’xy gt
Example.

Let a rectangular plate having ali four edges fixed (refer to Fig. 3. 0-36)

be subjected to a temperiture gradient
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Then
?_:'.l_ o _lﬂ.and g:l:- = 0 R
ax a dy

Substituting these expressions into the right-hand side of the design equation,

the following is obtained after integration:

rlab | /m\* 1- v sny A mn pg_
Amn"a [ (a) T2 (b) ] t 2L +y) p§1 q§1 Ppa GTm?) (a-q7)
4(1 +v) baT,

3 if m and n are odd numbers
mn ¥

0 if m and n are even numbers ,

and

B rlab (g)” Ll (91_)2
mn 4 b 2 a
N N

+2(1+v) Z E A '—{—ﬂm—{j’=0 .

pei qm1 P4 (p-m*)n’-q

Let N=2. Then the preceding equation becomes

4

2 2 2
n%ab (l) 1-yp (l) . 2x 2 _ . (1+v)boT,
Au[ 2) t 3 (p) | 21+ 9 By -z - =
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2% 2
e 0o,
2x 2 = 0
-2%)(1-2%) ~ '
2 % 2 0
- 22)(2%- 1) '
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2X2 = 0
n(2t-1 - 7
2x2 =0
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- 24) (2t - 1)



