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DETINITION OF SYMBOL.S

Symbol Definition
A Cross-sectional arca; area
A Cross-scctional area of beam at x =0
mn’qu Cocflicients for the series by which the stresses are

expressed, in,

A Ay Ag A Constants based on the boundary conditions, equations (953)
and (96) . dimensionless

Ai' . Al’ , A2' ,A3' Constants, psi (Figs. 5.0-8, 5,0-9)

a Limiting value (lower) for radius; inside radius or radius

of middle surface of cylinder

ag Maximum valuc of initial impertection
a, Constant, ° I
af Constant, ° I'/in,
'’ qu Coclficients for the series by which the stressces arc

expressoed, in.

NOTES:
1. Bars over<any letters denote middie-surface values.

2. The subscript cr denotes critical vidues for buckling.

3. The superscripts PP and C identify quantitics associated with the
particular and complementary solutions, respectively.

4. The subscript R denotes values required to completely suppress

thermal deformations.
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Symbol

By, By, By

bm blv bz

DEFINITION OF SYMBOLS (Continued)

Definition
Constants, in./(in.)( hr)(Fig. 5.0-10)
Breadth (or width) of cross section; limiting value (upper)
for radius; outside radius
Constants in polynomial representation of the temperature
Tx); °F, °F/in., and °F/in.%, respectively
Specific heat of the material, Btu/(lb)(°F)
Constants of integration, in.
Coefficients in polynomial representation of UP, in.-1b, 1b,
1b/in.,..., respectively, refer to equation (106)
Diameter
Plate bending stiffness or shell-wall bending stiffness
Constants in polynomial representation of the function Tz(X) :
°F, °F/in., and ° F/in2, respectively
Coefficlents in polynomial representation of VP, in, ,
dimensionless, 1/in.,..., respectively; refer to
equation (106)
Young's modulus of elasticity
Young' s modultus of support-beams, psi

Young' s modulus of plate, psi
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DEFINITION OF SYMBOLS (Continued)

Definition
Sccant modulus, psi
Tangent modulus, psi
Base for natural logarithms, dimensionless (2. 718)
Fixed-end moment
Fixcd-lixed
I"'ixed-supported
Variation in depth of beam along the length
Modulus of rigidity or shear modulus
Varintion in width of beam along the length
Running cdge forces acting normal to the axis of revolution at
positions A and B, respectively (Figs. 3.0-51 and 3. 0-52),
Ih/in.
Moment of inertin
Support-beam centroidal moment of inertia
Arci moments ot incrtin token about the v and z  axes,
respectively, inl
Imaginary number, N
Thermal diffusivity of the material, {ft?/hr = l</CI)p

An integer (1,2,3,4,5) cxponent
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k!

M ,M
r

rf

M',M'
r

1
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DETINITION OF SYMBOLS (Continued)

Definition
Thermal conductivity of the material, Btu/(hr) (ft)(°F)
Length
Operator defined by equation (103)
Moment
Running edge moments acting at positions A and B,
respectively ( Figs. 3.0-51 and 3.0-52), in.-1b/in.
Thermal moment
Thermal bending parameter, in. -1b/in.
Running bending moments, in.-1b/in.
Running twisting moment, in.-1bh/in,
Bending-moment parameters (Table 3. 0-5 and Figs. 3.0-15
through 3. 0-19)
Temperature resultant, in. -tb/in.
Running bending moments acting on sections of the plate
which are perpendicular to the x and y directions,
respectively (positive when associated upper-fiber stresses
are compressive), in. -1b/in.
Moment about y axis
Moment about 2z axis

Moment in beam at x= 0



Symbol

P

P4

DEFINITION OF SYMBOLS (Continued)

Definition
Temperature distribution in the z-direction
Moment coclficients, plotted in Figure 3. 0-46, dimensionless
Surface moment (Fig. 3.0-53) in. -1b/in.?
Exponent of thermal variation along the length of the beam;
also upper limit for summation indices, dimensionless
Axinl loud per unit length on plate edge
Running membrane loads, 1b/in.
Running membrance shear load, 1b/in.
Membrane-force parameters (Table 3. 0-6), dimensionless
Temperature resultant, 1b/in.
Temperature distribution in the y-direction
Hoop-force coefficients, plotted in Figure 3. 0-49,
dimensionless
Axial Toree
Axinl foree resulting feom temperature
Column lond
Ruadial pressure, psi
Summaltion indices, dimensionless

Heat input
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Symbol

DEFINITION OF SYMBOLS (Continued)

Definition
Running transversc shear load, 1b/in.
Temperature distribution in the x-direction
Shear coefficients, plotted in Figure 3.0-46, dimensionless

Radius

Simply supported

Meridional coordinate measured downward from top of the
truncated conc (Fig. 3.0-50), in.

Meridional coordinate measured upwird from bottom ol the
truncated cone (Iig. 3.0-50), in.

Temperature

Average value for T, °F

Weighted average value for T, °F

Temperature difference between the plate faces, °F
Temperature at edges of the plate, °F

Final uniform temperature which the body reaches at
sufficiently long times

Inside temperature; also initial uniform temperature of
the body, ° F

Average value for temperature distribution across the wall

thickness at any single position, °F
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DEFINITION OF SYMBOLS (Continued)

Symbol Definition

Ts Temperature of the supports, °F

Txy Temperature at any location in the plate, ° F

Ty Outside temperature

Ty, Ty Temperature [unctions, ° F

t Time (hr) or thickness

tcr Time to the onsct of ¢reep buckling, hr

u | Displacement in the x-dircetion or r-direction for

circular plate
v Tunction representing temperature variation in y- and z-

directions; also rotations in a meridional plane for a shell

,VP Component of defleetion without thermal cffeets
VT Component of deflection including thermal effects
Vy Shear at x= 0

v Displacement in the v-direction or A-direction for

circular plate
w Displacement in the z-direction
w! Dcflection parameter (Table 3. 0-5 and Figs. 3. 0-15

through 3. 0-19), dimensionless
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DEFINITION OF SYMBOLS (Continucd)

Definitinn
Displacement, in the z-dircction, for the case where all edges
are simply supported, in.; also radial deflection for shell
Displacement component, in the z-direction, in. (Note: The
superscript A is merely an identification symbol and is not
meant to be a generalized exponent. )
Defleetion coctlicients, plotted in Figurce 3. 0-45, dimensionless
Coordinate axis
Coordinate axis
Upper limit for the summation index k , dimensionless;
also surface loads, psi
Coordinate axis measured normal to undeformed plate
Coefficient of linear thermal expansion, in./(in,)(° F)
Critical value of temperature parameter (value at which
initial thermal buckling occurs), dimensionless
Knockdown factor, dimensionless
Knockdown factor (Fig. 4.0-17), dimensionless
Shearing strain in planes parallel to and including the
x-y plane, in./in,

Time rate of change for ny , in,/(in.) (hr)
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DEFINITION OF SYMBOLS (Continued)

Definition
Maximum absolute value for deflection measured normal to
the x-y plane, in.
Del-operator
Unit strain
Strain intensity defined in equations (1), in. /in.
Time rate of change for <., in. /(in.) (hr)
Normul strains acting in the x and y directions,
respectively (positive when fibers lengthen), in./in.
Time rate of change {or € and Ey , respectively,
in. /(in.) (hr)
Function defined by cquations (56) and (76), dimensionless
Plasticity reduction factor, dimcensionless
Angular coordinate (Fig. 3.0-14), rad
Function defined by cquations (58) and (78), dimensionlcss
Slope coclficients, plotted in Tigure 3. 0-46, dimensionless
A constant in strain-sueess relotionship
Poisson' s ratio {(somerimes written g, m )
+/(1-0)

Dencity of the materiol, h/0t"



DEFINFTION OF SYMBOLS (Continued)

Symbol Definition

O Stress induced by restraint

o Stress intensity defined in equations (1), psi

(o'i)cr Critical valuc for the stress intensity o, » psi

(cr-) Axial stress duc to the artificial force P, , psi

P B
B

o'r,at,aa,cr¢ Normal stresses acting in the r, {, 0, and ¢ directions,
respectively (positive in tension), psi

crO {n-planc shear stress, psi

ox,cy Normal stresses acting in the x and vy directions,
respectively (positive in tension), psi

(o-x) Critical axial stress for buckling of the cylinder, psi

cr
00y Lateral axial stresses
g Plane stress
vz

Txy Shearing stress acting in planes parallel to and including
the x-y plane, psi

¢ Stress function [Airy's stress function I(x,y) ] ; also denotes
"meridional'; also angular coordinate

o( ) Function defined in cquations (76), dimensionless

Py P2 Ps Paramcters tabulated in Tables 6.0-1, 6,.0-2, and 6, 0-4,

respectively, dimensionless
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Symbol

‘1'2’ '1'3

DEFINITION OF SYMBOLS (Concluded)

Definition
Parameters tabulated in Tables 6.0-3 and 6. 0-5,
respectively, dimensionless
Parameter tabulated in Table 6. 0-1, dimensionless
Value of ¥, at r/R =1, dimensionless
Value of ¥ at r/R =1, dimensionless

Function defined in equations (78) , dimensionless
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D. THERMAL STRESSES. Page 1

1.0 INTRODUCTION.

Restrictions imposed on thermal expunsion or contraction by continuity
of the body or by the conditions at the boundaries induce thermal stresses in
the body. In the absence of constraints at boundaries, thermal stresses in a
body are self equilibrating.

Except for a few simple cases, the solution of the thermoelasticity
problem becomes intriactable (see Ref. 1). Therefore, for thermal stress
analysis, further approximations leading to the strength of material and finite
element methods are usecd extensively. Depending upon its geometry, a
structural element is classified as one of the following: rod, beam, curved
beam, plate, or shell. If a structure consists of one of the elements naumed
above, or of some simple combination of them, the method of strength of muate-
rials will yield good results. However, if the structure has i complex geomet-
rical shape, the finite clement method is casier to use und yields satisfactory
results. The method of finite clement analysis is sugpested for use on an
idcalized structure which can be represented by a large number of smaller,
simpler elements (rods, beams, triangular plates, reetangular plates, ete.)
connected at a finite number of points (e.g., only at vertices of triangles or
rectangles, or ends of rods, etc.) to provide approximately the configuration
of the actual structurc.

In a constrained structure, compressive stresses resulting from ther-
mal, or thermal and mechanical, loading may produce instability of the struc-
ture. The linear thermoclastic formulation of the problem excludes the ques-
tion of large deformutions. Thus, for buckling, or for problems where loads
depend upon deformation, nonlinearity that is due to large deformations must
be incorporated in the problem formulution (e¢.g., beam-column analysis) .
The extreme difficulties involved in solving the nonlincar thermoelusticity
problem have led the rescarchers to resort to the approximate methods of
strength of materials ond finite clements.

One of the important problems associuted with high temperature is that
of creep deformation and relaxation. The phenomenon of the increasc in strains
with time when the specimen is subject to constant stress and constant high
tempernture is called creep. The general formulation remains the same us in
thermoclasticity or strength of materinls, except Lthat the stress=strain rela-
tion is expressed by o viscoelastic model. 'The linear viscoclastic model does
not represent many materials; but the complexities multiply if the nonlinear
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model is used. Relatively little work has been done towards the solution of
nonlinear viscoelastic theory.

Vibrations that result from thermal shock are quite small in comparison
with those resulting from mechanical load. They are not considered here.
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2.0 THERMOELASTICITY.

Three-dimensional equations for equilibrium, displacement, stress,
and strain can be found in Ref. 1 in terms of rectangular, cylindrical, or
spherical coordinates. Formulas given below are, for the most part, two-
dimensional expressions for rectangular coordinates.

2.0.1 Plane Stress Formulation.

For a temperature distribution of the form 'i‘(x, y) in a long prismatic

body, eight quantities, ¢, 0 ,0 , € , € , € , u, and v satisfy,
XX yy Xy XX yy Xy
in plane stress concept, the following eight equations.

Equations of equilibrium (no body forces),

o0 o

X 4 =90
0xX dy
o do

o S =0
ox 8y

Stress~Strain Relations,

exx= 1? (oxx- V(ryy)+ aT
€ = 1—, (o - vo Y+ T
yy E “yy XX

i 1
<y 2 Txy 2G “xy ’

Strain-Displacement relations,
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and in the case of plane stress,
g =0 = g¢ =0
zZ Xz yz
€ =-—= (o__+ }+ aT
2z E xx" yy
2.0.2 Plane Strain Formulation.
In the case of plane strain defined by equations
u=u(x, y)
V=v(X, ¥) -~
w=0
replace E, r, and « of the stress-strain relations of plane stress formula-
tion by E;, vy, and @, respectively, where E;= 1—1—-2-, ry= i-—y-- ; and
- i

a 4= a(1+v). The equations of equilibrium and striin-displacement relations
remain unchanged.

2.0.3 Stress Formulation.

The solution of three partial differential equations satisfying the given

boundary condition gives the stress distribution, ¢ , ¢ , and ¢ in the
XX Xy vy
body. The equilibrium equations are

B(Txx aoxy
+ =
ox oy rE=0
a0 o0
S AN W oy v=0
9x Jy

and the compatibility condition is, for a simply connected body

2 ‘ oX | oY) |
v (Uxx+ Uyy+ alBT)+ (1 + v)(ax + ay) = 0
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2.0.3.1 Solution of Airy's Stress Function.

I. Plane Stress.

For simply connected regions in the absence of the body forces, X, Y,
the solution of this problem is simplified considerably by using Airy's stress
function &(x,y). (See Section A1.3.6) Then

y o e P 0%
xx dy. O’ yy axt " Uxy axay

The relations above satisfy the equilibrium equations identically, and substitu-
tion of these relations into the stress compatibility cquation yields

Vie + ol VT=0

where

26 23°% ale
T+ + T

)
vie - vH(Vie) = ¢
( ) ¢ X9y ay

ax

For this problem the boundary conditions should be expressed in terms of the
stress function &.

II. Plane Strain.

For planc striin problems the governing cquation cin be obtained from
those above by substituting Ey, and «y for I and o respectively, where
K

E,= o oy = all+ ),
-
B
Vo + Sy V2T = 0

1*1}2



