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3.3 DOUBLY CURVED SHELLS.

Doubly curved shells are frequently used in space vehicles as
external closures of fuel tanks or entry vehicles or an internal common bulk-
heads. When doubly curved shells develop compressive membrane forces in
reaction to externally applied loads, their load-carrying capacity is often
limited by structural instability, or buckling.

The buckling strength of a doubly curved shell depends upon its
curvature, its geometric proportions {including the stiffening, when present),
the elastic properties of its materials, the manner in which its edges are
supported, and the nature of the applied loading. Initial, although small,
geometric deviations of the shell from its ideal shape can have a significant
adverse effect on the buckling strength of doubly curved shells and can cause
large scatter of experimental results.

This paragraph recommends practices for design of compressively
loaded doubly curved shells. Included are practices recommended for the
design of complete spheres, ellipsoids, and toroids, as well as bulkheads.
Most of the data are for shells subjected to uniform pressure loads, although
data are also given for point loads on spheres.

The reduction of critical buckling loads caused by imperfections,
small dynamic oscillations, boundary conditions, and the like is usually
accounted for by multiplying the theoretical buckling loads by a correlation
factor to obtain a lower-bound conservative estimate. However, when insuf-
ficient data are available to obtain correlation factors, testing is recommended
to verify the design. Experimental verification is also recommended for
shells of arbitrary shape and for shells of revolution having cutouts, joints,
plasticity effects, and nonuniform shell stiffness. The effect of small oscil-
lations in applied loading is considered to be accounted for by the correlation

factor.
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For doubly curved shells, considerable capability for theoretical
analysis is available although experimental investigations of the stability of
doubly curved shells lag far behind analytical capabilities; the shallow spherical
cap under external pressure is the only problem which has been investigated
extensively.

The growing use of digital computers for analysis of shell structures
has greatly improved the available analyses which can be performed. For
example, a comprehensive computer program, BOSOR 3, {1] performs a
stability analysis of segmented, ring-stiffened shells of revolution. The pro-
gram is quite general with respect to types of loading, geometry, boundary
conditions, and wall stiffness variation. All the programs for doubly curved
shells, including both finite-difference and finite-element, treat only those cases
in which the shell does not become plastic before buckling.

Although the capability for stability analysis has increased, param-
etric optimization studies for problems of interest are lacking. This may well
be because of the relative newness of most computer programs. To date, most
computer programs have been used for spot checks of approximate solutions and
for comparisons with experimental data.

The designer is advised to be alert to new developments in shell-

stability analysis.
3.3.1 ISOTROPIC DOUBLY CURVED SHELLS.

Unstiffened isotropic doubly curved shells subjected to various con-
ditions of loadings are considered in this paragraph. Solutions are limited to

spherical, ellipsoidal, and toroidal shells.

3.3.1.1 Spherical Caps Under Uniform External Pressure.

The buckling of a spherical cap under uniform external pressure
(Fig. 3.3-1) has been treated extensively. The theoretical results are pre-

sented in References 2 and 3 for axisymmetric snap-through of shallow spherical
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shells with edges that are restrained

against translation but are either free to

\ rotate or are clamped. Results for asym-
metric buckling are given in References
4 and 5 for the same boundary conditions.
The results reported in these references
are presented as the ratio of the buckling
pressure pcr for the spherical cap and
the classical buckling pressure Pog for
a complete spherical shell as a function
of a geometry parameter A :
FIGURE 3.3-1. GEOMETRY QOF Poy
SPHERICAL CAP UNDER UNIFORM —= = f(A) (1)
EXTERNAL PRESSURE Pey
with
2 t\?
Pep [3(1 - u2))1/2 E(r) ’ (2)
A = [12(1 - p?))1/% (R/)1/2 singl (3)

where ¢ is half the included angle of the spherical cap (Fig. 3.3-1). The
function f(A) depends on the boundary conditions imposed on the shell.

Most of the available test data apply to spherical shells, and the
values are lower than the theoretically predicted buckling pressures. The
discrepancy between theory and experiment can be attributed largely to initial
deviations from the ideal spherical shape [3, 6, 7] and to differences between

the actual and assumed edge conditions [8, 9]. Most of the available data are
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summarized in Reference 10; some other test results are given in References

6 and 11. A lower bound to the data for clamped shells is given by

p
<L - 0.14 +5;—‘,-,-2-(A>2) X (4)
ct

This curve is plotted in Figure 3.3-2. Whereas the A parameter is used in
shallow-shell aralysis, Figure 3. 3-2 may be applied to deep shells as well as

to shallow shells.
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3.3.1.2 Spherical Caps Under Concentrated Load at the Apex.

- Spherical caps under concentrated load at the apex (Fig. 3.3-3)
will buckle under certain conditions. The theoretical results for edges that

are free to rotate and to expand in the direction normal to the axis of revolution,



Section C3.0
January 15,1972
Page 89

P and for clamped edges, are given in
Reference 12 for axisymmetric snap-
through and in References 13 and 14 for
asymmetric buckling. Experimental
results for loads which approximate con-
centrated loading are described in
References 15 to 19.

For shells with unrestrained
edges, buckling will not occur if A is
less than about 3. 8. In this range of

shell geometry, deformation will in-

crease with increasing load until col-

FIGURE 3. 3-3. GEOMETRY OF lapse resulting from plasticity effects
SPHERICAL CAP UNDER
CONCENTRATED LOAD AT THE

APEX greater than 3. 8, theoretical and experi-

occurs. I'or shells with values of A

mental results are in good agreement for axisymmetric snap-through but dis-
agree when theory indicates that asymmetric buckling should occur first. In
this case, buckling and collapse are apparently not synonymous, and only
collapse loads have been measured. A lower-bound rclationship between the
collapse-load parameter and the geometry parameter for the data of References

13, 15, and 16 for shells with unrestrained edges is given hy

P r

cr 1 -
e S g A (4= A= 18) . (5)

FFor spherical caps with clamped edges, theory indicates that
buckling will not occur if A is less than about 8. For values of A between
8 and 9, axisymmetric snap-through will occur, with the shell continuing to

carry an increasing load. Forlarger values of A, asymmetrical buckling
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will occur first, but the shell will continue to carry load. Although imperfec-
tions influence the initiation of symmetric or asymmetric buckling, few mea-
surements have been made of the load at which symmetric or asymmetric
deformations first occur. Experimental results indicate that the collapse loads
of clamped spherical caps loaded over a small area are conservatively esti-
mated by the loads calculated in Reference 13 and shown in Figure 3. 3-4.

When the area of loading becomes large, large buckling may occur at a lower

level.
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FIGURE 3.3-4. THEORETICAL BUCKLING LOADS FOR
CLAMPED SPHERICAL CAP UNDER
CONCENTRATED LOAD

3.3.1.3 Spherical Caps Under Uniform External Pressure and Concentrated
Load at the Apex.

Clamped spherical caps subjected to combinations of uniform exter-
nal pressure and concentrated load at the apex are discussed in Reference 20.

The experimental and theoretical data given there are insufficient, however,
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to yield conclusive results. A straight-line interaction curve is recommended:

P P
_— =1 (6)
p p
cr cr

where P is the applied concentrated load, p is the applied uniform pressure,
Pcr the critical concentrated load given in Paragraph 3.3.1.2, and P, the

critical uniform external pressure given in Paragraph 3.3.1.1,

3.3.1.4 Complete Ellipsoidal Shells Under Uniform External Pressure.

Ellipsoidal shells of revolution subjected to uniform external pres-
sure, as shown in Figure 3. 3-5, are treated in Reference 21. Calculated theo-
retical results for prolate spheroids are shown in Figures 3. 3-6a and 3. 3-6b.
Experimental results given in Reference 22 for prolate spherical shells with
4>A/B> 1.5 are in reasonably close agreement with the theoretical results
of Reference 21. For A/B = 1,5, the theoretical pressure should be multi-
plied by the factor 0.75 to provide a lower bound to the data. The results given
in Reference 23 for half of a prolate spheroidal shell (A/B =3) closed by an

end plate are in good agreement with those for the complcte shell.
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The analysis of Reference 21 indicates that theoretical results for
thin, oblate spheroidal shells are similar to those for a sphere of radius
Bﬂ

RA = . (7)

The data of Reference 24 show that the experimental results are
similar as well. Thus, the external buckling pressure for a thin, oblate

spheroid may be approximated by the relationship

2
S (Ba) ey

2 t/ E - % ' (8)

which is the limit of equation (4) as A becomes large.

3.3.1.5 Complete Oblate Spheroidal Shells Under Uniform Internal
Pressure.

When the ratio A/B of an oblate spheroid is less than “J?/ 2,
internal presgure produces compressive stresses in the shell, and hence
allows instabiiity to occur. The theoretical values of the critical internal
pressures given by the analysis of Reference 21 are shown in Figure 3. 3-7.
No experimental results are available, but the study of the imperfection sensi-
tivity of Reference 21 indicates that there should be good agreement between
theory and experiment for shells with 0.5 < A/B < 0.7.

3.3.1.6 Ellipsoidal and Torispherical Bulkheads Under Internal Pressure.

Clamped oblate spheroidal (ellipsoidal) bulkheads (Fig. 3.3-8)
may have the ratio of length of minor and major axes (A/B) less than N 2/2
without buckling under internal pressure, provided that the thickness exceeds

a certain critical value. This problem is investigated in Reference 25.



Section C3.0
December 15, 1970
Page 95

AXIS OF
EVOLUTI

ﬁ}

Pod 301-p%) B2
2E12

L

(] 0.1 0.2 0.3 0.4 05 0.6 0.7
A
8

FIGURE 3.3-7. THEORETICAL BUCKLING PRESSURES OF OBLATE
SPHEROIDS UNDER INTERNAL PRESSURE {(u =0.3)
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FIGURE 3.3-9. REGION OF STABILITY FOR ELLIPSOIDAL
CLOSURES SUBJECTED TO INTERNAL PRESSURE (u =0.3)
Torispherical end closures (Fig. 3.3-11) are also investigated in

Reference 25. Calculations are made for the prebuckling stress distribution
in these bulkheads for ends restrained by cylindrical shells and for buckling
pressures for torispherical bulkheads with clamped edge conditions after
buckling. The results are shown in Figure 3.3-12. The experimental results
of Reference 26 indicate that the theoretically predicted buckling pressures
should be multiplied by a correlation factor y equal to 0.7.

3.3.1.7 Complete Circular Toroidal Shells Under Uniform External
Pressure.

The complete circular toroidal shell under uniform external pres-
sure (Fig. 3.3-13) has been investigated and is described in Reference 27;

the theoretical results obtained are shown in Figure 3. 3-14.
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REVOLUTION

FIGURE 3.3-11. GEOMETRY OF TORISPHERICAL CLOSURE

The experimental results are given in Reference 27 for values of
b/a of 6.3 and 8 and indicate good agreement with theory. For values of b/a
equal to or greater than 6.3, the theoretical buckling pressure should be
multiplied by a factor of 0.9 to yield design values. This correction factor has
been recommended in Reference 28 for long cylindrical shells which correspond
to a value of b/a of ©». For values of b/a less than 6.3, the buckling pressure

should be verified by test.

3.3.1.8 Shallow Bowed-Out Toroidal Segments Under Axial Loading.

A bowed-out equatorial toroidal segment under axial tension
(Fig. 3.3-15) will undergo compressive circumferential stress and will thus
be susceptible to buckling. An analysis for simply supported shallow segments

is given in Reference 29 and yields the relationship
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FIGURE 3.3-15. BUCKLING OF BOWED-OUT TOROIDAL
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where the correlation coefficient y has been inserted to account for discrep-

ancies between theory and experiment.

(9)

The values obtained by minimizing

equation (9) with respect to 3 are shown in Figure 3.3-15. The straight-line

portion of the curves is represented by the relationship

N2 aN3

%—Tyz ] (10)
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A similar analytical investigation described in Reference 30 for clamped
truncated hemispheres in axial tension yields results in close agreement with
those for the curve of Figure 3. 3-15 for r/a =1 .

The experimental results for the truncated hemisphere given in
Reference 30 indicate that the correlation coefficient for the curve for r/a

equals 1 is

v = 0.35 . (11)

The same value of the correlation coefficient may be used for other values of
r/a.

Some results for bowed-out equatorial toroidal segments under
axial compression are given in Reference 31; the equatorial spherical shell

segment loaded by its own weight is treated in Reference 32.

3.3.1.9 Shallow Toroidal Segments Under External Pressure.

The term "lateral pressure' designates an external pressure
which acts only on the curved walls of the shell and not on the ends; "hydro-
static pressure" designates an external pressure that acts on both the curved
walls and the ends of the shell. Expressions for simply supported shallow
equatorial toroidal segments subjected to uniform external lateral or hydro-

static pressure (Figs. 3.3-16 and 3. 3-17) are given in Reference 33 as

2

r
P 1'12 1:!:“[32
“er  _ 4 2% , 12 .0 (_a__
7|'2D -—Bz (1 +B) + 11" ¥ Z 1+Bz (12)
for lateral pressure, and as
2
r
P r2 2 1&:"'/32
cr £ _ L 2y" .12 o z( a

2 (1 T 1/2?) +1/2
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FIGURE 3.3-16. BUCKLING OF TOROIDAL SEGMENTS
UNDER UNIFORM LATERAL PRESSURE

for hydrostatic pressure. In cquations (12) and (13), the upper sign refers
to segments of type (a) of Figure 3.3-18, whereas the lower sign refers to
segments of type {b) of Figure 3. 3-18. The correlation coefficient vy has
been introduced to account for discrepancics between theory and experiment.,
The results of minimizing the buckling pressure with respect to the circum-
ferential wavelength parameter 8 are shown in Figures 3.3-16 and 3. 3-17.
The straight-line portions of the curve for the shells of type (a) of Figurc

3.3-18 are represented by the relationships

2

P r
2 43
(:2‘1) == -;: yZ (l1ateral pressure) . (14a)
Pcr rfz 8NN3 r
o5 - . a7 (hydrostatic pressure) . (14b)
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FIGURE 3.3-17. BUCKLING OF TOROIDAL SEGMENTS UNDER
UNIFORM EXTERNAL HYDROSTATIC PRESSURE
No experimental data are available except for the cylindrical shell,

for which a correlation factor of

v = 0.56 (15)

was recommended in Reference 28. The same correlation factor can be used
for shells with r/a near zero but should be used with caution for shells of
type '(b) with values of r/a near unity. For shells of type (a) with values of
r/a near unity, the shell can be conservatively treated as a sphere, or the

buckling pressure should be verified by test.
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3.3.2 ORTHOTROPIC DOUBLY CURVED SHELLS.

The term "orthotropic doubly curved shells" covers a wide variety
of shells. In its strictest sense, it denotes single- or multiple-layered shells
made of orthotropic materials. In this section, the directions of the axes of
orthotropy for shells of revolution are assumed to coincide with the meridional
and circumferential directions of the shell, The term also denotes types of
stiffened shells in which the stiffener spacing is small enough for the shell to
be approximated by a fictitious sheet whose orthotropic bending and extensional
properties include those of the individual stiffening elements averaged out over
representative widths or areas.

| The behavior of the various types of orthotropic shells may be
described by a single theory, the governing equations of which are equations

of equilibrium for the buckled structure, and reclationships between force and
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moment resultants and extensional and bending strains. The matrix equation
relating the inplane forces and bending moments to the inplane strains and
curvatures for shells of revolution with axes of orthotropy in the meridional

and circumferential directions can be written in the following form:

N [Cy Cp O Cy Cy O €
N, Cia Cpp O Caua Cp O &
Nyo 0 0 Csys 0 0 0 €49
M Cua Cyuy O Cu Cgi5 O Ky
M, Cis  Cp5 0 Ceg Gy O K2
My, i 0 0 0 0 0 Cee K12
(16)

Zero entries in the preceding matrix generally refer to coupling
terms for layers whose individual principal axes of stiffnesses are not aligned
in meridional and circumferential directions. The values-of the various elastic
constants used in determining buckling loads of orthotropic shells are different
for different types of construction. Some widely used expressions are given
in References 1 and 34. _

The theory for single-layered shells of orthotropic material is
similar to that for iSotropic shells since the coupling terms Cyy , Cy5 , Caq ,
and Cy; may be set equal to zero. For stiffened doubly curved shells or for
shells having multiple orthotropic layers, this is not generally possible, and
it is shown in References 35 and 36 that the neglect of coupling terms can
lead to serious errors. For example, the inclusion of coupling terms yields
a significant difference in theoretical results for stiffened shallow spherical-
dome configurations having stiffeners on the inner surface or on the outer sur-

face. The difference vanishes when coupling is neglected.
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Very little theoretical or experimental data are available for ortho-
tropic and stiffened doubly curved shells. The general instability loads of
pressurized shallow spherical domes with meridional stiffeners are determined
in Reference 37, and a semiempirical design formula is given in Reference 38
for stiffened spherical caps. This formula closely approximates the test data
given in Reference 38. Buckling loads are given for grid-stiffened spherical
domes in Reference 39. References 37 and 39 do not include the effect of
stiffener eccentricity.

Stiffener-eccentricity effects are investigated in Reference 35 for
grid-stiffened spherical domes. Eccentrically stiffened shallow equatorial
toroidal shells under axial load énd uniform pressure are investigated in
Reference 40. The development of a buckling computer program that includes
coupling as well as nonlinear prebuckling bending effects for orthotropic shells
of revolution is discussed in References 1 and 34. A further description of
this program is given in Subsection 3.4. (The cards and a computer listing for
this program are available from COSMIC, University of Georgia, Athens, Ga.)
Numerical results obtained from this program [34] were in good agreement
with selected experimental results. The computer program can be used to

determine the buckling load of the following orthotropic shells:

1. Shells with ring and stringer stiffening.

o

Shells with skew stiffencrs.

3. Fiber-reinforced (layered) shells.

4. Layered shells (isotropic or orthotropic).
5. Corrugated ring-stiffened shells.

6. Shells with one corrugated and one smooth skin (with rings).
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Boundary conditions may be closed at one or both ends or may be
free, fixed, or elastically restrained. Edge rings are permitted on the bound-
ary or as discrete rings in the shell.

This computer program can be used in conjunction with experi-
mentally determjned correlation factors to obtain buckling loads for orthotropic
shells of revolution. The limitations of the program are given in References 1
and 34 and are also discussed in Subsection 3. 4.

The design recommendations that follow are limited to spherical
domes; the recommendations should also be verified by test, where feasible.‘
The possibility of local buckling of the shell between stiffening elements should
be checked.

The investigation of Reference 39 gives the theoretical buckling
pressure of a grid-stiffened spherical dome under uniform external pressure.
This analysis assumes that the spherical dome is "deep" and that it contains
many buckle wavelengths. In this'case, the boundary conditions have little
effect on the buckling load. Eccentricity effects are neglected. Experimental
results given in Reference 24 tend to support the assumptions of the analysis.

If the analysis of Reference 39 is extended to the materially or
geometrically orthotropic shell, the hydrostatic buckling pressure can be

expressed as

1/2
] 1 +2 Cuc+ Cas + gm
_.Pl_fﬁ = 4y 4 a4 (17)
Cyyt Yo

where

2 2
¢1=—LC z (1-——22-—(: ) , (18a)
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2C
‘f’z = CZ = C C . (18b)
g o =S 5 C12Can
Ci1 Co Cy1 Co2

The constants Cyy, Cy, Cpg, C33, Cyy, Cy5, Cs5 , and Cg are
defined in Reference 34 for the various materially and geometrically orthotropic
materials. Equation (17) does not include the effect of stiffener eccentricity
since the coupling terms Cyy , Cy5, Cpy , and Cyy in equation (16) have been
neglected. Only limited experimental data exist for geometrically or materially
orthotropic spherical domes subjected to hydrostatic pressure (24, 38]. In
the absence of more extensive test results, it is recommended that the isotropic
spherical cap reduction factor shown in equation (4) also be used for the ortho-
tropic spherical shell. The correlation factor is given by

v = 0.14 + %\—g . (19)
Refer to Figure 3. 3-;2 for the plot of this equation. The effective shell thickness

to be used in obtaining A is recommended as

4

¢ = | CuCss 13 . (20)
Cy1 Co

3.3.3 ISOTROPIC SANDWICH DOUBLY CURVED SHELLS.

The term "isotropic sandwich' designates a layered construction
formed by bonding two thin isotropic facings to a thick core. Generally, the
thin isotropic facings provide nearly all the bending rigidity of the construction.
The core separates the facings and transmits shear so that the facings bend

about a common neutral axis.
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Sandwich construction should be checked for two possible modes of
instability failure: (1) general instability failure where the shell fails with
core and facings acting together, and (2) local instability failure taking the

form of dimpling of the faces or wrinkling of the faces (Fig. 3.1-7).

3.8.3.1 General Failure.

If the sandwich core is resistant to transverse shear so that its
shear stiffness can be assumed to be infinite, the sandwich shell can be treated
as an equivalent iéotropic shell. For unequal thickness facings, the equivalent

isotropic material thickness and modulus of elasticity are then given by

t = V12 h , (21a)

Etl , [EY
E; 4 E; 4

t

and for equal-thickneés facings with the same modulus of elasticity, by

t=~N3h , (22a)

_  2Et

E = ——— (22b)
N3h

These equivalent properties can be used in conjunction with the
reco;rlmended practices in Paragraph 3. 3.1 and with the computer program of

Reference 34 to analyze isotropic sandwich doubly curved shells.
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Only one theoretical investigation which includes shear flexibility
is available. In Reference 41 the buckling of a sandwich sphere comprised of
a core layer of low-modulus material and two equal face layers of high-modulus
material is discussed. Because there are insufficient theoretical and experi-

mental data, no design recommendations can be given for this case.

3.3.3.2 Local Failure.

Modes of failure other than overall buckling are possible. For
honeycomb-core sandwich shells, failure may occur because of core crushing,
intracell buckling, ‘and face wrinkling. The use of relatively heavy cores
(6 > 0.03) will usually prevent core crushing. Lighter cores may prove to be
justified as data become available. Procedures for the determination of intra-

cell buckling and face-wrinkling loads are given in Reference 42.



