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3.1 CYLINDERS,

A better understanding of the theory of buckling of circular
cylindrical shells has been made possible by use of electronic digital
computers. This understanding has been aided both by more rigorous
formulations of the theory and by reliance on experimental investigation.

Most of the available information on buckling of circular
cylindrical shells is restricted to unstiffened shells of uniform thickness
or to stiffened shells with uniform stiffness and properties, subjected to
axisymmetric loading states which have certain simple longitudinal
distributions, generally uniform. Problems involving surface loadings
and thickness or stiffness variations that are axisymmetric but nonuniform
longitudinally have been solved, but detailed investigations of the effects of
various parameters have not been made, Also, available information is
inadequate for the analysis of loadings that are nonuniform circumferentially.
Problems of this type can be treated by digital computer programs and will
be discussed in Subsection 3. 4.

The application of theory to the design of actual cylindrical
shells has been complicated by apparent discrepancies between theory and
experiment. For shells in which longitudinal compression of the cylinder
wall predominates, the discrepancies can be quite large. For shells in
which shear or circumferential compression predominates, the discrepancies
are generélly less severe but still large enough to require experimental
programs to establish design data. The causes of such discrepancies are
generally understood.

The primary source of error is the dependence of the buckling
load of cylindrical shells on small deviations from the nominal circular
cylindrical shape of the structure. Because the unloaded shape of a test

specimen usually has not been stringently controlled, most test results for
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nominally identical specimens have larger scatter and fall below the
theoretical values.

Another source of discrepancy is the dependence of buckling
loads of cylindrical shells on edge values of longitudinal and circumferential
displacements or forces. Also, because tangential edge conditions have not
usually been precisely controlled in buckling tests, some of the scatter of
test results can be attributed to this source. Current methods of establishing
design data tend to treat both initial imperfections and edge conditions as
random effects. Results from all available tests are considered together
without regard to specimen construction or methods of testing and are
analyzed to yleld lower bound or statistical correction factors to be applied
to simplified versions of the theoretical results. This technique has proved
satisfactory to date for design purposes.

Within the limitations imposed by the state of the art, acceptable
procedures for the estimation of critical loads on circular cylindrical

shells are described in this section,
3.1.14 ISOTROPIC UNSTIFFENED CYLINDERS,

Unstiffened isotropic circular cylinders subjected to various

conditions of loading are considered below.

3.1.1,1 Axial Compression — Unpressurized.

The design allowable buckling stress for a circular cylinder

subjected to axial compression is given by

°x

er _ vE t/r (1)
n N3 (1-42)
ox

Ccr

0.67% (for pu =0.3) ,
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where the factor y should be taken as

<2
Il

1.0 - 0.901 (l—e_¢) (2)

where

- 1 [‘E r
¢ = e : for (t < 1500)

Equation (2) is shown graphically in Figure 3. 1-1 and provides a good lower
bound for most test data [6]. The information in Figure 3, 1-1 should be
used with caution for cylinders with length-radius ratios greater than about
five since the correlation has not been verified by experiment in this range.

Very long cylinders should be checked for Euler-column buckling,
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FIGURE 3.1-1. CORRELATION FACTORS FOR ISOTROPIC CIRCULAR
CYLINDERS SUBJECTED TO AXIAL COMPRISSION
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When geometric and material properties are such that the
o ‘

computed buckling stress is in the plastic range, the actual buckling

siress o should be calculated by applying the plasticity coefficient, 7 .
cr
This calculation is facilitated by the use of the curves of Paragraph 3. 1.6.

For moderately long cylinders the critical stress T should be determined
cr

by using curve E; in Paragraph 3.1.6. For extremely short cylinders
(Z =~ 0) curve G should be used.

For a cylinder having a length between those lengths for which
curves E; and G apply, a plasticity factor is not available. Presumably,
a linear interpolation should provide satisfactory results. Such a factor
would be a function of cylinder geometry as well as of the usual material

stress-strain curve,

3.1.t.2 Axial Compression — Pressurized

Buckling and collapse coincide for internally pressurized
circular cylinders in axial compression, just as in the case of the
un_pressurized cylinder. Pressurization increases the buckling load in
thé following ways:

1. The total compressive load must be greater than the tensile
pressurization load p 7 r® before buckling can occur.

2. The destabilizing effect of initial 1mperfectlons is reduced.
The circumferential tensile stress induced by the pressurization inhibits
the diamond buckling pattern, and, at sufficiently high pressurization, the
cylinder buckles in the classical axisymmetric mode at approximatély the

classical buckling stress.
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It is recommended that the total load for buckling, unless sub-
stantiated by testing, be obtained by the addition of the pressurization load
pT r? , the buckling load for the unpressurized cylinder [equation (1)],

and an increase in the buckling load caused by pressurization; that is:

= 21 Ef (——L——+Ay)+p7rr2 (3)
press

N3 (1-p2)

where Ay is obtained from Figure 3. 1-2,

For pu=0.3 ,
=2m E (0.6y +Ay) + 2 )
press Et* (0.6y +Ay) +prmr (4)
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FIGURL 3.1-2. INCREASE IN AXIAL-COMPRESSIVE
BUCKLING-STRESS COEFFICIENT OF CYLINDERS
RESULTING FROM INTERNAL PRESSURE



Section C3. 0
January 15, 1972
Page 10

3.1.1.3 Bending — Unpressurized.

Buckling and collapse coincide for isotropic, unpressurized
circular cylinders in bending. The procedure given for isotropic cylinders
in axial compression may be used also to obtain the critical maximum
stress for isotropic cylinders in bending, except that a correlation factor
based on bending tests should be used in place of the factor given by
equation (2) for cylinders in axial compression. The correlation factor

for the cylinder in bending is taken as

1,0 - 0.731 (1-e"7’) (5)

~
]

where

oo T
Equation (5) is presented graphically in Figure 3.1-3, This

equation should be used with caution for r/t> 1500 because experimental
data are not available in this range [7]. Although the theoretical critical
stress for axial compression and that for bending are the same, the
correlation factor for bending is greater than that for compression. This
is primarily because the buckling of a cylinder in compression can be
triggered by any imperfection on the shell surface, whereas in bending,
buckling is generally’initiated in the region of the greatest compressive
stress. |

. For inelastic buckling the critical stress may be found by
using curves E; in Paragraph 3.1.6. If the stresses are elastic the
allowable moment is

M =nrlg t ) ' (6)
cr X
cr
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FIGURE 3.1-3. CORRELATION FACTORS FOR ISOTROPIC
CIRCUILAR CYLINDER SUBJECTED TO BENDING

3.1,1.4 Bending — Pressurized.

For thin-walled cylinders subjected to bending and internal

pressure, it is recommended that the buckling moment be obtained by
adding the moment-carrying capability of a pressurized membrane cylinder
the buckling moment for the unpressurized cylinder {equations (1) and (5)],

and an increase in the critical moment caused by pressurization. Then

- 7r ER (—J”——— +A'y)+0.5p1'rr3 . (D

N3 (1-p?)

1
press

where Ay is obtained from Figure 3. 1-2,



Section C3.0
February 15, 1976
Page 12

For u=0.3 .

Mpress=1rrEt2(0.Gy+Ay)+0.5p1rr3 . (8)

3.1.1.5 External Pressure.

_ The term "lateral pressure' designates an external pressure
which acts only on the curved walls of the cylinder and not on the ends. The

load in the cylinder wall is given by

N =0t =pr . ' 9
y = ot=P (9)
The term "hydrostatic pressure" designates an external pressure which acts
on both the curved walls and the ends of the cylinder. The cylinder wall

loads are given by

N =gt =pr
y y p s
= = E:-r-
Nx oxt > (10)

Except for unusually short cylinders, the critical pressures for the two types

of loads are not significantly different.

An approximate buckling equation for supported cylinders loaded

by lateral pressure is given as

Ny .=k 7 : ()

: The buckling equation for cylinders loaded by hydrostatic pressure is
obtained by replacing ky by kp in the formula above.
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As shown in Figure 3.1-4, except for unusually short eylinders, the
critical pressures for the two types of loads are not significantly different. For
short cylinders equations suitable for design solutions to the hydrostatic (Z <

30) and lateral (Z < 70) cases respectively are:

. 8366
k, = 1.853 + 141714 2 83666 (12a)
and
k = 3.980 + .02150 z1°12° . (12b)
y

The solutions for intermediate length cylinders (100 = Z =< 4000) con-

verge to an equation given by

k = .780N 7z (13a)
y
or the critical pressure is given by
. 04125 1D

S ONT

The family of curves for long cylinders (Z > 3000) is dependent upon the

(13b)

radius~thickness ratio of the eylinder and corresponds to buckling of the cylinder

into an oval shape, as given by

k = — 7 (14&)

or

-zt ()

41 -p

and applies for 20 < L N1- u? = 100,

o+

4 U.S. GOVERNMENT PRINTING OFFICE 1976-641-255/391 REGION NO. 4



p

BUCKLING COEFFICIENT KV'K

<+ LATERAL ~

-

—
AN

\— HYDROSTATIC

FIGURE 3.1-4. BUCKLING COEFFICIENTS FOR SIMPLY SUPPORTED ISOTROPIC
CIRCULAR CYLINDERS SUBJECTED TO EXTERNAL PRESSURE

v§| sbed

9/6] ‘9l Aaenagoy
0°¢D uonoeg



Section C3.0
December 15, 1970
Page 14

For inelastic stresses the plasticity correction factor should be
obtained from Paragraph 3.1.6. For short cylinders (yZ < 5) the C
curves should be used, For moderate length cylinders (5 <yZ < 4000)
the E; curve should be used. For long cylinders (yZ > 4000) the E

curve should be used.

3.1.1.6 Shear or Torsion — Unpressurized.

The theoretical buckling coefficient for cylinders in torsion can
be obtained from Figure 3.1-5. The straight-line portion of the curve is
given by the equation

N g2

- Xy __ _ . 3/4
kxy 2D 0.85 (yZ) (15)

2
and applies for 50 < yZ < 78 (f) (1-¢?). Equation (15) can be written as

_ 0.7/ E (16)

T
XYor (5)5/4 (£)1/2
t r
r2
For yZ > 78 (?) (1-p?) , the cylinder buckles with two

circumferential waves. The buckling coefficient is then given by

= 232 yZ (17)

1/2 1/4
2 (—E) (1-p2)

k
Xy
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FIGURE 3.1-5. BUCKLING COEFFICIENTS FOR SIMPLY SUPPORTED
ISOTROPIC CIRCULAR CYLINDERS SUBJECTED TO TORSION

or

yE t\/2
T = 374 - . (18)
Vo 3 N2 (1-p?) / ( )

To approximate the lower limit of most data, the value
Y34 = 0,67 (19)
is recommended for moderately long cylinders.

Plasticity should be accounted for by using curves A in

Paragraph 3. 1.6.
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3.1.1.7 Shear or Torsion — Pressurized.

The increase in buckling stress caused by internal pressure may

be calculated by using the curves in Reference 1.

3.1.1.8 Combined Loading.

The criterion for structural failure of a member under combined
loading is frequently expressed in terms of a stress-ratio equation,
Rlx + Rzy + Raz =1 . The subscripts denote the stress caused by a particular
kind of loading (compression, shear, etc.), and the exponents (ﬁsually
empirical) express the general relationship of the quantities for failure of
the member. Simply stated, the term ''stress-ratio' is used to denote the

ratio of applied to allowable stress.
I. Axial Compression and Bending.

The recommended interaction equation for combined compressive

load and bending is

Rc + Rb =1 . (20)

The quantities Rc and R, are, respectively, the compressive

and bending load or stress ratios. Tht; denominators of the ratios are the

allowable loads or stresses given by equations (1) and (2) for cylinders

in axial compression and by equations (1) and (5) for cylinders in bending.
Equation (20) is also recommended for internally pressurized

cirqular cylinders in combined axial compression and bending by using

equations (3) or (4) and (7) or (8).



Section C3. 0
December 15, 1970
Page 17

II. Axial Compression and External Pressure.

The recommended interaction equation for combined compressive

load and hydrostatic or lateral pressure is

Rc + Rp =1 . ' (21)
The quantities Rc and Rp are, respectively, the compressive and hydro-
static or lateral pressure load or stress ratios. The denominators of the
ratios are the allowable stresses given by equations (1) and (2) for
cylinders in axial compression and by eq@ations (11) or (12) for cylinders

subjected to external pressure.
III. Axial Compression and Torsion.

For cylindrical shells under torsion and axial compression, the
analytical interaction curve is a function of Z and varies from a parabolic
shape at low-Z values to a straight line at high-Z values. The scatter of
experimental data suggests the use of a straight-line interaction formula.

Therefore, the recommended interaction equation is
R +R, =1 . (22)

The quantities Rc and R ¢ are, respectively, the compressive and torsion
load or stress ratios. The denominators‘:tof the ratios are the allowable
stresses given by equations (1) and (2) 'Lfof' cylinders in axial compression

and by equations (16) or (18) for cylinders in torsion.
IV. Bending and Torsion.

A conservative cstimate of the interaction for cylinders under

combined bending and torsion is

R, +R? -1 . (23)
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The quantities R, and R, are, respectively, the bending and

b t
torsion load or stress ratios. The denominators of the ratios are the
allowable stresses given by equations (1) and (5) for cylinders in bending

and by equations (16) or (18) for cylinders in torsion.
3.1.2 ORTHOTROPIC CYLINDERS.

The term "orthotropic cylinders' covers a wide variety of
cylinders. In its strictest sense, it denotes cylinders made of a single
orthotropic material or of orthotropic layers. It also denotes types of
stiffened cylinders for which the stiffener spacing is small enough for the
cylinder to be approximated by a fictitious sheet whose orthotropic bending
and extensional properties include those of the individual stiffening elements
averaged out over representative widths or areas. Generally, the directions
of the axes of orthotropy are taken to coincide with the longitudinal and
circumferential directions of the cylinder.

The behavior of the various types of orthotropic cylinders may be
described by a single theory, the elements of which are equations of
equilibrium for the buckled structure, relationships between force and
moment resultants, and extensional and bending strains. For cylinders of
a single orthotropic material, it is generally permissible to neglect the
coupling between force resultants and bending strains and between moment
resultants and extensional' strains. The theory is then similar to that for
isotropic cylinders.’ For stiffened cylinders or for cylinders having
orthotropic layers, however, neglect of the coupling terms can lead to
serious errors. For example, the inclusion of coupling terms yields a
significant difference in theoretical results for stiffened cylinder configurations
having stiffeners on the inner surface or the outer surface. The difference

vanishes when coupling is omitted.
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Theoretical and experimental results for stiffened shells are
generally in better agreement than those for unstiffened shells. The
possibility of local buckling of the cylinder between stiffening elements
should be checked.

In general, the complexity of the analysis for orthotropic
cylinders necessitates the use of a computer solution. Applicable computer

solutions are discussed in Subsection 3. 4.

3.1.2.1 Axial Compression.

A buckling equation for stiffened orthotropic cylinders in

compression [8] is given by:

AZ] A22 A23
2
:( : ) ~a Rz A1l for (nz4) (24)
X mm Au A12 ,
Agy Ag
in which

- A — 2

Ay =E (m_) +G (2) : (25)
x £ Xy\r

2
- n - mm
Azz = Ly (I‘) + ny ( ) ) . (26)
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Az Dx( 1) +ny 2)(1') +Dy(r)
E 2, v L, o2
- ¥ () 20T .
- A% el mr n
Agy = Ay *( E*G ) 1 . (28)
- — m7\2 n En _ n\¢
A23 = Agz = (C + 2ny) ( T) ; + “r%’ + Cy( ;) ’
(29)
Exx mr | = (mr\® (= — \mrm {0}
Agg =8 = 7 Tt X(T) +(ny+2ny)T(;) )
(30)

Values of stiffeners to be used for various types of construction
are given in Paragraph 3. 1.2.6. Prebuckling deformations are not taken
into account in the derivation of the equation. The cylinder edges are
assumed to be supported by rings that are rigid in their own plane but offer
no resistance to rotation or bending out of their plane. The equation can be
specialized for various types of cylinders which have been treated separately
in the literature; for example, unstiffened or stiffened orthotropic cylinders
with eccentricity effects neglected and stiffened or stiffened orthotropic
cylinders with eccentricity effects taken into account. For ring-stiffened
corrugated cylinders, a similar but not identical theory is given in References
9 and 10, For given cylinder and stiffener dimensions, the values of m

and n to be used are those which minimize —ﬁx .
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The unusually large number of parameters in equation (24)
does not permit any definitive numerical results to be shown. The computer
programs discussed in Subsection 3. 4 should be used for solution of the
critical axial compressive load for a given design. It has been shown that
for combinations of parameters representative of stiffened shells, calculations
indicate that external stiffening, whether stringers or rings or both, can
be more effective than internal stiffening for axial compression. Generally,
calculations neglecting stiffener eccentricity yield unconservative values
of the buckling load for internally stiffened cylinders and conservative
values of the buckling load for externally stiffened cylinders. An extensive
investigation of the variation of the buckling load with various stiffener
parameters is reported in Reference 11. The limited experimental data
[9-17] for stiffened shells are in reasonably good agreement with the
theoretical results for the range of parameters investigated.

On the basis of available data, it is recommended that the
buckling loads [calculated from equation (24)] of cylinders having closely
spaced, moderately large stiffeners be multiplied by a factor of 0.75. The
correlation coefficients covering the transition from unstiffened cylinders to
stiffened cylinders with closely spaced stiffeners have not been fully investi-
gated. Although theory and experiment [16] indicate that restraint against
edge rotation and longitudinal movement significantly increases the buckling
load, not enough is known about the edge restraint of actual cylinders to
warrant taking advantage of these effects unless such effects are substantiated
by tests.

For layered or unstiffened orthotropic cylindrical shells, the
available test data are quite meager [18, 19]. For configurations where

the coupling cocfficients Cc ,C ,C , and K can be neglected,
Xy Xy Xy
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it is recommended that the buckling load be calculated from the equation

le"’ D D
— =m?f1+2 ¥ g2 4 X pl

™ D D D
X X X

T T ___2

PR Gl By " Exy

Mmzﬁx r ExE -E?
Xy Xy 2 . opd
E_+ - 2E B +Eyﬁ .

(31)

The correlation factor +y is taken to be of the same form as the
correlation factor for isotropic cylinders [equation (2)] with the thickness

replaced by the geometric mean of the radii of gyration for the axial and

circumferential directions. Thus

1.0 - 0.901 (1-e'¢)

]
Il

(32)

where

- - 1/2

9.8 . (33)

3.1.2.2 Bending.

Theoretical and experimental results [10, 20-23], indicate that

the critical maximum load per unit circumference of a stiffened cylinder
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in bending can exceed the critical unit load in axial compression. In the
absence of an extensive investigation, it is recommended that the critical
maximum load per unit circumference of a cylinder with closely spaced
stiffeners be taken as equal to the critical load in axial compression, which
is calculated from equation (24) multiplied by a factor of 0. 75.

For layered or unstiffened orthotropic cylinders with negligible
coupling coefficients, it is recommended that the maximum unit load be
calculated by equation (31) with y replaced by
-¢

v =1.0-0.731 (1-e ") (34)

where
1/2
i
¢ 29,8 (35)
L
3.1.2.3 External Precssure.
The counterpart of equation (24) for stiffened orthotropic
cylinders under lateral pressure is given by
Ay A Ay
Az Agy Agy
r 1Ay Azy Azq
P = =3 (36)
n? Aqy Agg
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For hydrostatic pressure, the quantity n* shown in equation (36) is replaced

by

2
n® +1/2 (m;rr)

In the case of lateral pressure, m is equal to unity, whereas
n must be varied to yield a minimum value of the critical pressure but
not less than 2. In the case of hydrostatic pressure, the value of m should
be varied as well as n . For long cylinders, equation (36) is replaced by '
D2
3{p, =
& : (37)

If the coupling coefficients Ex , Cy s ny , and Exy can be
neglected, the critical buckling pressure can be approximated by [24]:

be(%, 5, -5t )|
. 51 - )
pu S| m s s
fr E
y
for
— —_ — — 1/2
D 3/2 E E - 2 / 42
X —x v X — > 500 : (39)
D 12E D
X y x
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Equation (36) has been investigated primarily for isotropic
cylinders with ring stiffeners [25-27]. For closely spaced ring stiffening,
References 25 and 26 show that the effectiveness of inside or outside rings
depends on the shell and ring geometries. Generally, for shells with values
of Z less than 100, outside rings are more effective than inside rings,
whereas for values of Z greater than 500, the reverse is true. As the
ring geometry varies, the effectiveness of outside stiffening tends to increase
as the stiffness of the rings relative to the shell increases. Somewhat lower
buckling pressures are given by the extremely complex but more accurate
theory of Reference 28, but the differences are not so significant as to
warrant its use. |

The experimental results for ring-stiffened cylinders described
in Reference 29 are in reasonably good agreement with the theoretical
results of equation (36). However, for cylinders of all types, it is
recommended that the buckling pressure calculated from equation (36) be
multiplied by a factor of 0.75 for use in design, as has been recommended

for unstiffened isotropic cylinders of modcrate length.
3.1.2.4 Torsion.

The problem of torsional buckling of orthotropic cylinders has
been treated in References 24 and 30, which do not take into account
coupling between bending and extension, and in Reference 31, which does.
If coupling effects are negligible, the critical torque of moderately long

cylinders can be estimated from the relationship [24]:

- — 3/8
_ E_E_- l‘:; L 5/4
M, ~ 21.75 Dy5/3 =X ST (40)
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for
s\ (EE -2\
o e L - 500 . (41)
D 12E.D r
X y x

Reference 31, however, shows that coupling effects are quite
important for cylinders stiffened by closely spaced rings. For long shells
internal rings are generally more effective than outside rings; for short
shells the reverse is true. In the absence of general formulas or graphs
to cover the entire range of parameters that should be considered, the
equations of Reference 31 should be solved for each specific case considered.

The test data of Reference 32 are in good agreement with
theoretical predictions but are insufficient to provide an adequate test of
the theory. It is therefore recommended that theoretical critical torques

be multiplied by a factor of 0.67 for moderately long cylinders.

3.1.2.5 Combined Bending and Axial Compression.

On the basis of theory [10, 20, 21] and limited experimental
‘data [9-10], a straight-line interaction curve is recommended for
orthotropic cylinders subjected to combined bending and axial compression.

The critical combinations of loading are thus given by

Rc + Rb =1 . (42)

3.1.2.6 Elastic Constants,

The values of the various elastic constants used in the theory of
buckling of orthotropic cylinders are different for different types of

construction.
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Stiffened Multilayered Orthotropic Cylinders.

Some widely used expressions for this type of cylinder are:

_ N E, EA_
E = — X ) ¢+ . (43)
1 -
X4 ”x“y . k b
_ N E E A
E = -I——X—— b rdr . (44)
Y k=t pxp'y K
N p E N poE
E = Xy _ ¥y X tk
_ 1 -
Xy \PTRA . Ko kot . .
(45)
N

G._ = ), (G t : (46)

v (B

—_ \‘ EX 1 ESIS ~ ESAS

D P e (-—— 3o+t z"") + + z°

_ 1 b
X7 1 pxpy ) 2 k kk b S
(47)
N E . EI BA
D o= [—— S 3wt 22 )+ + 22 ,
by = L \TTup (12 % tk‘k) b Zr T d
k-1 XY/

(48)
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- #xEy uyEx { .
Xy 4Gy i- *1C 1—2t'1’<+tkzk
k=1 y "x“y Mxy .
Gst GrJr
_ g Ex - N EsAs
C_ = P SE— Z, + Z S, (50)
X =1 1- px”y . tk k s b
_ % ( E . ~ EA
C = —y tz + z . (51)
y k=1 1- ”x”y . kk r d
N v E N g E
- E _1__Y__X__ o - E XY o
Xy k=1 - “x“y K kk k=1 t- #xuy K kk !
(52)
— % ~
K =
Xy kil (ny K K’k ’ (53)

where the subscript k refers to the material and geometry of the k';h layer
of an N-layered shell (Fig. 3.1-6). A proper choice of the reference surface
can make at least one of the coupling coefficients vanish. For example, if

A is taken as
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N g E
S . S
1 -
k=1 “x’uy K k'k
A= — : (54)
E
Xy
the coefficient Exy vanishes, and if
N
k?ii (ny)k tk(sk
. A= = ) (55)
G
Xy

the coefficient Exy vanishes.
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FIGURE 3.1-6. MULTILAYERED ORTHOTROPIC
CYLINDRICAL SHELL GEOMETRY
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II. Isotropic Cylinders with Stiffeners and Rings.

For a cylinder consisting of a stiffened single isotropic layer and
for a reference surface at the center of the layer, equations (43) to (53)

reduce to

E A
- Et 8 8
E,. = 7 S (56)
E A .
- Et rr y
Ey =T ug + ) . (57)

E - —iEﬂf ' . (58)

Xy TR +1) ; (59)
E1 E A
= Et 5 s 8.8
Dy = 21 - %) b % b (60)
E1 E A
pony Eta I 2 rr
- + 1
Dy = 1ot - i) d r T4 (61)
GJ GJ
— Et s's r'r
= . 62
ny 6(1 +p) * b * d (62)
— Els
C =7 (63)
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— ~ ErAr
Cy =z, T3 (64)
'C_=K_ =0 . (65)
Xy Xy

III. Ring-Stiffened Corrugated Cylinders.

The following formulas are commonly used to calculate the
required stiffnesses of ring-stiffened corrugated cylinders, with the choice

of formula depending on the different assumptions which may be made:

- — EI‘AI‘
Ex=Et,Ey: 3 , (66)
— t
ny = Gt<?_) ) (67)
Bx = ET . (68)
_ ErIr . ErAr
Dy = —3 + zf‘ 3 (69)
g GI‘JI‘

<y = i . (70)
_ E A
C =z —=Z (71)
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=C =C =K _ =0 ) (72)
Xy X Xy Xy

Slightly different stiffnesses are given in Reference 22.
1V. Waffle-Stiffened Cylinders.

Stiffnesses for cylinders with waffle-like walls are described in

References 33 to 35.
V. Special Considerations.

In some designs of stiffened cylinders, the skin may buckle before
failure of the cylinder. Buckled sheet is less stiff than unbuckled sheet.
The decreased stiffness can be calculated by methods similar to those pre-

sented in References 13, 23, and 36.
3.1.3 ISOTROPIC SANDWICH CYLINDERS.

The term "isotropic sandwich' designates a layered construction
formed by bonding two thin facings to a thick core. Generally, the thin
facings provide nearly all the bending rigidity of the construction. The core
separates the facings and transmits shear so that the facings bend about a
neutral axis. The core provides the shear rigidity of the sandwich construc-
tion.

Sandwich construction should be checked for two possible modes
of instability failure: (1) general instability failure where the shell fails with
core and facings acting together, and (2) local instability taking the form of
dimpling of the faces or wrinkling of the faces (Fig. 3.1-7).

. If the isotropic sandwich shell has thin facings and the core has
relatively little bending stiffness, then for unequal thickness facings the

bending stiffness is given by
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FIGURE 3.1-7. TYPES OF FAILURE OF SANDWICH SHELIL.S

Et, t, h?
D, = 73
1 (1 - p?) (t; +1ty) (73)
and for equal thickness facings,
Bt, h?
i = 0 o (74)

The extensional stiffness for unequal thickness facings is given by

104
B1 = (1_“2) (t‘.l +t‘2) (75)

and for equal thickness,

2 FEt
f

T e

B, =
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The transverse shear stiffness for an isotropic core is given by

h2
D =G ————— (77)
q Xz 4+t
2
and for equal thickness,
Dq - ze h - tf (78)

The stiffness of other types of sandwich construction is given in References

37, 38, and 39.

3.1.3.1 Axial Compression.

Investigations of the buckling behavior of isotropic sandwich
circular cylinders in axial compression are reported in References 40 and 41.
Design information from these references is given in Figures 3. 1-8 and 3. 1-8.

Figure 3.1-9 is the more convenient of the two figures to use and
is applicable to all but unusually short cylinders [yZ < n¢/(1 + R)]. Figures
3.1-8 and 3. 1-9 are based on the small-deflection buckling theory and should
be used in conjunction with the correlation factor of Figure 3. 1-10 to pre-
dict buckling loads. Figure 3.1-10 is based on equation (32), given for

orthotropic cylinders. For the present application the parameter ¢ becomes

(79)

no
[{e]
(e o]
=

This procedure is consistent with the procedures given earlier for other types
of construction when shearing of the core does not contribute significantly

to the buckling deformations, that is, when No/ Dq of Figure 3. 1-9 is small.
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FIGURE 3.1-10, CORRELATION FACTORS FOR ISOTROPIC SANDWICH

CIRCULAR CYLINDERS SUBJECTED TO AXIAL

COMPRESSION
~As shearing deformations become more pronounced, the correction resulting
:from application of the factor y , as prescribed above, decreases and
becomes zero in the limiting condition of buckling from a weak‘core
[(No/Dq) > 2].

A weight-strength study based on Figure 3. 1-9 and published
values for the shear stiffness of honeycomb cores [42] indicate that unusually
lightweight cores are more desirable than heavier cores. Until adequate
test data are obtained to substantiate this indication, however, designs should
be limited to sandwiches with rather heavy cores (6 = 0.03). Also, it has
been found that sandwich plates with light honeycomb cores are susceptible to

additional modes of deformation, and failure may result from intracell
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buckling, face wrinkling, or an inferaction of one or both of these modes with
a cylinder-buckling mode. In addition, small buckle-like deformations have
occurred in actual structures long before the theoretical buckling load was
reached (see, for example, Ref. 43, p. 217). This behavior requires that
the structure be capable of resisting internal moments and shears in addition
to the directly applied loads. In the case of sandwich cylinders, the moments
and shears may cause core buckling or shear failure of the core.

The only known method of preventing these core failures is to use
relatively heavy cores which have considerable strength in crushing and shear.
Honeycomb cores with a density ratioc é = 0. 03 should be adequate to prevent
these core failures. Large margins against failure in intracell buckling and
wrinkling can be obtained with rather heavy cores with little or no weight
penalty. Moreover, when heavy cores are used approximate equations are
adequate for predicting failures in the intracell buckling and face-wrinkling
modes. The following equations may be used for this purpose. For intracell

buckling:
= 1‘ by 2
o 2.5 LR (t/S) (80)

where S is the core cell size expressed as the diameter of the largest

inscribed circle and

15 E ta

an
R . /\’ I+ I 2
’ N Ttlan

E (81)

where E and Et'm are the elastic and tangent moduli of the face-sheet

material. If initial dimpling is to be checked, the equation
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= 2
o, = 2.2 ER {t/S) (82)

should be used. The sandwich will still carry load if initial dimpling occurs.

Critical wrinkling stresses are predicted by

- ' 1/3 ’
T, 0.50 (Esec Ez ze) : (83)
where Ez is the modulus of the core in a direction perpendicular to the core,
and ze is the shear modulus of the core in the x-z plane. If biaxial
compressive stresses are applied to the sandwich, then the coefficients of

the equations must be reduced by the factor (1 +£)-1/3 where

_ minimum principal compressive stress in facings
maximum principal compressive stress in facings

(84)

Wrinkling and intracell-buckling equations which consider strength of bond,
strength of foundation, and initial waviness of the facings are given in
References 39, 44, and 45.

The plasticity correction factor given for isotropic cylinders in
axial compression also may be applied to isotropic sandwich cylinders. The
factor is applicable to sandwich cylinders with stiff cores and becomes some-

what conservative as the shear stiffness of the core is decreased [46].

3.1.3.2 Bending.

The buckling equations given in Paragraph 3.1.3.1 for circular
cylinders in axial compression may be used for cylinders in bending, provided
that the correlation factor vy is taken from Figure 3.1-11 instead of from
Figure 3.1-10. Figure 3.1-11 is based on equation (34), given earlier for

orthotropic cylinders in bending.
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FIGURE 3.1-11, CORRELATION FACTORS FOR ISOTROPIC
SANDWICH CIRCULAR CYLINDERS SUBJECTED TO BENDING

3.1.3.3 Lateral Pressure,

A plot of ky against y7Z , constructed from the data of Reference
47, is given in Figurc 3.1-12. The straight-line portion of the curve of
Figure 3.1-12 for a sandwich cylinder with a rigid core (6=0) is given by

the equation

N £
kK = —L— = 0.56 N 72 (85)
y Ty

There are no experimental data to substantiate Figure 3.1-12. IFrom cxperi-
ence with isotropic cylinders, however, it is suggested that a factor vy equal

to 0.56 be used with this figure.
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FIGURE 3.1-12, BUCKLING COEFFICIENTS FOR SIMPLY
SUPPORTED ISOTROPIC SANDWICH CIRCULAR CYLINDERS
SUBJECTED TO LATERAL PRESSURE ze/Gyz =1,0
) Here, as with sandwich cylinders in axial compression or bending,
designs should be limited to sandwich cylinders for which the density ratio ¢
is 0. 03 or greater, unless the design is substantiated by adequate tests.

For inelastic stresses the plasticity correction factor should be
obtained from Paragraph 3.1.6. For short cylinders (yZ < 5) the C curves
should be used. For moderate-length cylinders 5 < yZ < 4000 the E; curve
should be used. For long cylinders yZ > 4000, the E curve should be used.

3.1,3.4 Torsion.

Isotropic sandwich cylinders in torsion have not received the same
attention as cylinders in compression, although both rigid- and weak-core

criteria are reasonably well defined. Whereas the transition region between
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rigid and weak cores is not as well defined, the methods presented are prob-
ably sufficient for design purposes. Information on the transition region is
given in References 37 and 47; the latter was used to construct the plot of
Figure 3. 1-13, which applies to sandwich cylinders with cores exhibiting
isotropic shear behavior ze/ Gyz =1, The curves of this figure are dis-
continuous at the value of yZ where the buckling coefficient kxy becomes

equal to 1/R , indicating a change of mode of buckling at that point.

10
8 R=0 %‘7
6 S~ 0.01
. /4
x ,/ 0.1
= 10
5 7 ~
9 ——
W
]
w 05
34 2 —
o {
z 1.0
4 1
é 8
2 6
4
2
107!
2 4 658 2 4 68 2 468 2 4 68 2 4 68
1 10 102 103 104 10°

Yz

FIGURE 3.1-13. BUCKLING COEFFICIENTS FOR SIMPLY
SUPPORTED ISOTROPIC SANDWICH CIRCULAR CYLINDERS
SUBJECTED TO TORSION Gx?/Gyz =1.0



Section C3.0
December 15, 1970
Page 42

Reference 37 does not support this behavior, but it does not cover
a sufficiently wide range of geometric proportions to be used in the construc-
tion of the figure. In addition, Reference 37 indicates that there was some
scatter in the calculated results used to construct the charts of that reference.
In the ranges where comparisons between the data of References 37 and 47
could be made, only rather small discrepancies were noted. The straight-line
portion (yZ > 170) of the curve of Figure 3. 1-13 for a rigid core (R=0) is

given by the equation

N £
- XY _ 3/4
kxy 2D, 0.34 (vZ) . (86)

Experimental data are not available to substantiate Figure 3.1-13
for most sandwich cylinders. From experience with isotropic cylinders, it
is indicated that 0. 586 is the factor ¥ to be used with the figure. Here, as
with sandwich cylinders for which the density ratio of 6 is 0.03 or greater,
the same factor should be used unless the design is substantiated by adequate
tests. Plasticity may be taken into account by using the A curves of Para-

.graph 3.1, 6,
3.1.4 CYLINDERS WITH AN ELASTIC CORE.

The term ''cylinder with an elastic core' defines a thin cylindrical
shell enclosing an elastic material that can be either solid or have a hole in
its center. This type of shell closely approximates a propellant-filled missile
structure. The propellant is generally of a viscoelastic material and there-
fore is strain-rate sensitive. The core modulus should be obtained from

tension or compression tests of the core material simulating its expected

strain rate.
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Although there are some analytical data for orthotropic shells [48],
design curves are given only for isotropic shells and cores. The inverse prob-
lem of a core or cushion on the outside of the cylindrical shell is analyzed in
Reference 49. Not enough data are available, however, to recommend design

curves for this problem.

3.1.4.1 Axial Compression.

The buckling behavior of cylindrical shells with a solid elastic core
in axial compression is given in Reference 50. Analytical results obtained from
this reference arc shown graphically in Figure 3.1-14. For small values of

by

o = {1 :’1) o (87)
X
p cr
whaoro
1 .
P~
N (L - pd) ¢ /r\3/2
by = 7 - |7 (8%)
4 (1 -up°) I3 1
o ,
and o is the critical value of axial compression for an isotropice circular
N

ocr
eviinder, as found in Paracraph 3.1, 1.1, This aoproximmation is accurate for
&y less than one-half.  For larger values of ¢, lor example, ¢y greater than 3,

o oni2 ety . (39)

M

The plasticity correlation factors should Le determined as in

Paragraph 3. 1.1, 1.



Section C3.0
December 15, 1970

Page 44
10 -
a ’I
6
4
2
1 0,00 =1 ~ &, d
8
- 8
! 4
)
2‘
) 2
107!
8
6
y
4 74
2 /
102
2 4 68 2 4 68 2 4 68 2 4 68
102 107! 1 10 102

¢y= Vit Ee r g
! Vaa-iZ) E !
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3.1.4.2 External Pressure,

Analytical curves for the lateral pressure core are presented in
Reference 50. A plot of kpc against -7-%: for f = 100, 200, 500, or 1000

is shown graphically in Figure 3.1-15. The parameter kpc is expressed by

- PDﬁ . (90)

These curves are to be used for finite cylirders loaded by lateral pressures.
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Some cylinders are long enough for the critical pressure to be
independent of length; the single curve shown in Figure 3.1-16 can then be used.
The strafght-line portion of the curve can be approximated by the equation

k
_PC - 3/2
Ecr 3 {¢y) (91)
{4+ —2
Et (1 -uc)
where
3 (1-p2) Eo o/r\?
¢y = 2 = (—) (92)
1-pu E t
c
10°
8
6
4
b
2 v
_ 10?
-
ol s 4
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. FIGURE 3.1-16. BUCKLING PRESSURE COEFFICIENTS FOR
LONG CYLINDER WITH A SOLID CORE
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The few experimental data points available indicate good agreement

Hence, a correlation factor of 0. 90 is recommended for use in conjunction with

the curves in Figures 3.1-15 and 3.1-16. A reinvestigation of the factor may be

warranted as more data become available. Plasticity should be accounted for

by using curves A in Paragraph 3.1-6.

3.1.4.3

Torsion.

The buckling behavior of cylindrical shells with an elastic core is

analytically described in Reference 51 and is shown graphically in Figure

3.1-17.
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For small values of ¢3 (¢3 < 7), the analytical results can be

approximated by

= 1+0,16 ¢g (93)

Tx
ycr

where

=

= ()G (04

and Txy is the torsional buckling stress given by equation (16), with y
cr

$3

equal to unity. When ¢3 is greater than 10, the analytical results follow the
curve

T = 140,25 (¢g)%/4 ) (95)

Txy
cr
Experimental data are not available for this loading condition.
‘The experimental points obtained from cylinders with an elastic core for axial
compression and external pressure, however, show better correlation with
theory than the corresponding experimental results for the unfilled cylinder.

Hence, conservative-design curves can be obtained by calculating 'rxy in
cr

equations (93) and (95) with the correlation factor given by equation (19) and

the plasticity factor given by curves A in Paragraph 3. i-6.

3.1.4.4 Combined Axial Compression and Lateral Pressure.

Interaction curves for cylinders with an elastic core subjected to

combined axial compression and lateral pressure are shown in Figure 3. 1-18,
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FIGURE 3.1-18. INTERACTION CURVES FOR CYLINDERS
(r/t =300) WITH AN ELASTIC CORE
These curves were obtained analytically in Reference 50 and indicate that for a
sufficiently stiff core, the critical axial compressive stress is inscnsitlive to
lateral pressurce, and similarly, the critical lateral pressure is insensitive to
axial compression. Until more experimental data become available, the use

of a straight-linc inleraction curve is recommended for conservative design.
3.1.56 DESIGN OF RINGS.

Little information is available on which to base the design of rings
for cylinders to exclude general instability failures. The criterion of Reference
52 is frequently cited as applicable to cylinders subjected to bending or com-

pression.  Unfortunately, this criterion is empirical and based on data from
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test cylinders with proportions of little interest in contemporary design. A
few checks made on cylinders in use have indicated that the criterion usually
is conservative, but this may not be so in certain cases [10, 53].

A less direct procedure for designing rings may be used. It con-
sists simply of calculating the failing load of the cylinder in the so-called
general-instability mode, which involves failure of the rings, as well as cal-
culation of the failing load of the cylinder for wall failure between rings. Both
calculations are made for several ring weights. If such calculations are plotted
against ring weight, the weight necessary to force failure in the desired mode
can be ascertained. In addition, the amount of error in weight {rom uncertain-
ties in the calculations can be judged. Presumably, there may be some inter-
action between failing modes; thus, somewhat heavier rings than those indicated
by the calculations should be used.

This method of designing rings is, of course, applicable to all types
of loading and all types of wall construction. It also has the advantage of giving
the designer some feeling for the influence of the various factors which deter-
mine ring weight.

A study of References 53 and 54, which present general linear
- analyses of ring-stiffened isotropic cylinders in torsion and of orthotropic
cylinders in compression, indicates that the recommended procedure gives
the same result as general theory for all cylinders except those with a single

ring dividing the cylinder into two equal bays.
3.1.6 PLASTICITY CORRECTION FACTOR.

The effect of plasticity on the buckling of shells can be accounted
for by the use of the pldsticity coefficient, n . This coefficient is defined by

the ratio
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where

O = the actual buckling stress.
o = the elastic buckling stress (the stress at which buckling

would occur if the material remained elastic at any stress
level).

The elastic buckling stress, therefore, is given by the equation

The definition of 1 depends on Ocr/”e , which is a function of
the loading, the type of shcll, the boundary conditions, and the type of con-
struction. For example, the 1 recommended for homogeneous isotropic

cylindrical shells with simply supported edges subjected to axial compression

is
r \ 1/2
— i
B '\fhths #e
n= E 1= 2

where F‘t . Es and p are the tangent modulus, sccant modulus and Poisson’'s
ratio, respectively, at the actual buckling stress, and ue is the elastic
Poisson's ratio.

For a given material, temperature, and 1, a chart may be pre-
pared for ocr/n versus o . . By first calculating the elastic buckling stress,
ocr/n , the actual buckling stress L can be read from the chart of ucr/n

versus o, . This method climinates an iterative procedure which would

otherwise he necessary.
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Figures 3. 1-19 through 3. 1-25 present curves of acr/n versus

O for some materials and temperatures commonly encountered in the aero-

space industry.

In many cases, the curves are so close together that they are

drawn as one curve.

The n used to determine each curve is defined as follows:

Curve 1
A ES/E
E_ E,
B — [0.330+0.670 [ u? + (1-p?) —
E E
| s
Es r Ey
- 2 g2y —
C E 1/2 +1/2 ;.¢+(1p)E
L S
_
E E
D —2 10.352 + 0.648 [ p? + (1-p?) —
E E
I s
E p ES/E + (1-p%) Et/E
F 0.046 E_/E +0.954 E /E (k= 0.33)
G E/E
) 1/2
E E 1-u
E, t s e
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FIGURE 3.1-22. PLASTICITY CORRECTION CURVES FOR ALLOY STEEL -
4130, 4140, AND 4340 (180 000 psi)
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FIGURE 3.1-23. PLASTICITY CORRECTION CURVES FOR PH 15-7 Mo
STAINLESS STEEL SHEET AND PLATE — RH 1050, FH 1075
(room temp. )
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FIGURE 3.1~24. PLASTICITY CORRECTION CURVES FOR TITANIUM
ALLOY SHEET < 0.25 6AL~4V ANNEALED LB0170-113
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FIGURE 3.1-25.

< 0.25 6AL-4V CONDITION (SOLUTION-TREATED AND ANNEALED)

PLASTICITY CORRECTION CURVES FOR TITANIUM ALLOY SHEET
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Although the value of p is a function of the stresses for stresses
in excess of the proportional limit, the plasticity curves were obtained assum-
ing the conservative value of u = 1/3 . The difference between using the value
of u=1/3 and u =1/2 is small except for curves E and F .

It is ‘worth noting that for curve A, 7 = Es/E ; for curve G, °

n= Et/E and, on the remaining curves, 7 is a function of both E, and Es .

t
It can be seen that curves A and G bound the range of . Curve G is the
most conservative, whereas curve A results in the smallest possible reduc-

tion in the buckling load due to plasticity.





