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SECTION C2. STABILITY OF PLATES

2.1 BUCKLING OF FLAT PLATES.

This section contains design information for predicting the buckling
of flat plates. Various geometrical shapes under several types of loading
common to aerospace structures are considered. In most cases the methods
presented may be used in either the elastic or plastic stress range. For
plates subjected to thermal gradients wh.ich may cause buckling, reference
should be made to Section D4. 0. 2, "Thermal Buckling of Plates. "

2.1.1 UNSTIFFENED PLATES.

With few exceptions, plate critical stress equations take the

following form:

- k ¢ E t\?
F =11 —/—— (—-) (1)
cr 12(1_ve2) b

where the terms are defined as follows:

Fcr buckling stress which includes the effects of plasticity

and cladding (psi)
n plasticity reduction factor
n cladding reduction factor
k buckling coefficient
E Young's Modulus (elasticity) {psi)

v elastic Poisson's ratio
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t plate thi_ckness (in.)

b mmension of plate (usually short dimension, in.)

The buckling constant, k, depends only on the plate dimensions,
excluding its thickneés, and upon the condition of support at the edges. For
the material, temperature, and stress level used, the proper values of E,
Ver and 7 must be substituted into the equation above.

Buckling curves are used to find valﬁes of the buckling coefficient, -
k, for numerous loading conditions and various boundary conditions. By
knowing only the plate aspect ratio, a/b, values of k can be read directly.

The wavelength of the buckled surface is an important factor in
establishing- the critical buckling stress. A plate will buckle into a "natural"
wavelength corresponding to a minimum load. This principle has been
applied to advantage in structures to increase the efficiency of the flat sheet.
That is, if by any structural means the natural wavelength of buckling can be
prevented, the plate will carry more load.

I. Plasticity Reduction Factor

A tremendous amount of theoretical and experimental work has been
done relative to the value of the so-called plasticity correction factor. Pos-
sibly the first values used by design enginecers were 7 = Et/E or 5= Esec /E.
Whatever the expression for 7, it must involve a measure of the stiffness of

the material in the inelastic stress range; and, since the stress-strain rela-

tion in the plastic range is nonlinear, a resort must be made to the
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stress-strain curve to obtain a plasticity correction factor, This complica~
tion is greatly simplified by using the Ramberg and Osgood equations for the

stress-strain curve which involves three simple parameters:
E f f .
€
- + (5 (2)
Fo.1 Fo.7 ( Fo,¢ )

where n =1+ Ioge( 1"1’/7)/10ge (Fo.7/Fp.85) , and the terms are defined as

follows:

Fo.q secant yield stress taken as the intersection of the curve

and a slope 0.7E drawn from origin

n a parameter which describes the shape of the stress-strain

curve on the yield region

Fp.gs  stress at the intersection of the curve by a line of slope of

0. 85E through the origin

Reference 1 gives values for F ;, Fy g5, and many flight vehicle
materials; some of these 1re given in Table C2-~1.

There is usally a maximum, or "cutoff' stress, above which it ie
considered unsafe to stress the material. The value of this cutoff stress
differs with the type of loading, and may vary according to the design criteria
established for each design. Suggested values of the cutoff stress are pre-
gented in Table C2-2. A check should be made to ensure that the buckling
stregs is equal to, or less than, the cutoff stress.

With the use of the Ramberg-Osgood parameters, plasticity reduc-

tion factors will be given for various types of loading in the paragraphs

which follows.
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II. Cladding Reduction Factors

Aluminum alloy sheets are available with a thin covering of practi-
cally pure aluminum and is widely used in aircraft structures. Such material
is referred to as alclad or clad aluminum alloy.‘ The mechanical strength
properties of this clad material is considerably lower than the core material.
Since the clad is located at the extreme fibers of the alclad sheet, it is
located where the strains attain their value when buckling takes place.

Figure C2-1 shows the makeup of an alclad sheet and Fig. C2-2 shows the
stress-strain curves for cladding, core, and combinations. Thus, a further
correction must be made for alclad sheets because of the lower strength
clad covering material. Reference i gives simplified c'ladding reduction
factors as summarized in Table C2-3.

2.1.1.1 Rectangular Plates.

Rectangular plates subjected to loads which cause instability con-
stitute one of the major elements encountered in the structural design of
space vehicles, Rectangular plate simulaﬁon occurs in such areas as beam
webs, panels, and flanges.

I. Compressive Buckling

Figure C2-3 shows the change in buckled shape of rectangular plates
as the boundary conditions are changed on the unloaded edges from free to

restrained. In Fig. C2-3(a) the sides are free; thus, the plate acts as a
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column. In Fig. C2-3(b) one side is restrained and the other side is free;
such a restrained plate is referred to as a flange. In Fig. C2-3(c) both
sides are restrained; this restrained element is referred to as a plate.

Critical compressive stress for buckling of plate columns (free at
two unloaded edges) can be obtained from Fig. C2-4. As can be seen from
this figure, a transition occurs with changing b/ LNc values as evidenced by
the varying value of i between the limits (1 - ve"’ ) < ¥ <1, The increased
load-carrying capacity of a wide plate column, @ =1, is due to antielastic
bending effects in the plate at buckling. For narrow columns, =1 - uez,
the equatioh reduces to the Euler equation,

Figure C2-5 gives curves for finding the buckling coefficient, k,
to use in equation (1) for various boundary, or edge, conditions and a/b
ratio of the plate. The letter C on an edge means clamped or fixed against
rotation. The letter F means a free edge and SS means simply supported
or hinged. From these curves it can be seen that for long plates, (a/b) > 4,
the effect of the loaded edge support condition is negligible.

The buckling of a rectangular plate comﬁressed by two equal and
opposite forces loéated at the midpoint of its long side (Fig. C2-6) is given

in Reference 2. For simply supported sides, the following equation is true:

\ -
T°D r 1
= 3
Pcr 2b T3 (3)
T 2
'-“g tanh —-26 - T8
cosh2 —2-
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For long plates, (a/b) > 2, this reduces to
47D
Pcr b ) ' (4)
If the long sides of the platé are clamped, the solution reduces to
81D
P = .
cr b (5)

Figure C2-7 shows curves for kc for various degrees of
restraint (u) along the sides of the sheet panel, where u is the ratio of
rotational rigidity of the plate. Figure C2-8 shows curves for kc for a |
flange that has one edge free and the other with various degrees of edge
restraint,

Figure C2-9 gives the kc factor for a long sheet panel with two
extremes .of edge stiffener, namely a zee-stiffener which is a torsionally
weak stiffener and a hat section which is a closed section and, therefore,

a relatively strong stiffener torsionally,

To account for buckling in the inelastic range, one must obtain
the plasticity reduction factor. By using the Ramberg-Osgood parameters of
Paragraph 2. i. 1 along with Figs. C2-i0 and C2-11, one can find the
compression buckling stress for flat plates with various boundary conditions.

Cladding reduction factors should be obtained from Paragraph 2,1, 1,
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II. Shear Buckling

The critical elastic shear buckling stress for flat plates with
various boundary conditions is given by the following equation:

s A
Foo- — 58 (t (6)
Ser  12(1-v)) (b>

where b is always the shorter d_iménsion of the plate, as all edges carry
shear. The shear buckling coefficient, ks’ is plotted as a function of the
plate aspect ratio a/b in Fig. C2-12 for simply supported edges and
clamped edges.

It is interesting to note that a long rectangular plate subjected to
pure shear produces internal compressive stresses on planes at 45 degrees
with the plate edges. Thus, these compressive stresses cause the long panel
to buckle in patterns at an angle to the plate edges as illustrated in Fig, C2-13;
the buckle patterns have a half-wave length of 1’. 25 b.

Shear buckling of rectangular plates with mixed boundary condi-
tions has been investigated by Cook and Rockey {3]. The results are
tabulated in Table C2;4.

If buckling occurs at a stress above the proportional limit stress,
a plasticity correction factor should be included in equation (6). This
factor can be taken as ng = GS /G where G is the shear modulus and GS

the shear secant modulus as obtained from a shear stress-strain diagram
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for the material. Also, Fig. C2-14 can be used for panels with edge rota-
tional restraint if the values of oy ; and n are known.

III. Bending Buckling

The critical elastic bending buckling stress for flat plates is

2
Pooo o (1) @
bcr 12(1- v, )} \b

When a plate buckles in bending, it involves relatively short wavelength
buckles equal to (2/3)b for long plates with simply supported edges
(Fig. C2-15). Thus, the smaller buckle patterns cause the buckling coeffi-
cient kb to be larger than k_c or ks.

Figure C2-16 gives the critical stress coefficients for a plate in
bending in the plane of the plate with all edges simply supported, Figure
C2-17 gives the cm;efficients for the case when the plate tension side is simply
supported and the compression side is fixed. Figure C2-18 gives the
coefficients as a function of a/b for various degrees of edge rotational
restraint,

The plasticity reduction factor can be obtained from Fig. C2-10

using simply supported edges.

IV. Buckling Under Combined Loads

Practical design of plates usually involves a combined load system.
The buckling strength of plates under combined loads will be determined by

use of interaction equations.
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A, Combined Bending and Longitudinal Compression

The interaction equation that is accepted for combined bending

and longitudinal compression is

L5 -
Bb Rc 1.0 (8)

This equation is plotted in Fig. C2-19. Also shown are curves
for various margin-of-safety (M. S.) values.

B. Combined Bending and Shear

The interaction equation for combined bending and shear is

sz + RS2 = 1.0 , (9)

and the expression for margin of safety is

M.S. = ! -1 : (10)

2 2
N‘Rb +Rs

Figure C2-20 is a plot of equation (9). Curves showing various

M. S. values are also shown. RS is the stress ratio due to torsional shear
stress and RS is the stress ratio for transverse or flexural shear stress.

C. Combined Shear and Longitudinal Direct Stress (Tension or
Compression)

The interaction equation for this combination of loads is

R+ RS2 = 1,0 , (11)

and the expression for margin of safety is

M.S. = 5 -1 . (12)

2
2 2
(RL + [RF+4R )
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Figure C2-21 is a plot of equation (11). If the direct stress is
tension, it is included on the figure as negative compression using the com-

pression allowable.

D. Combined Compression, Bending, and Shear

The conditions for buckling under combined compression,
bending, and shear are represented by the interaction curves of Fig. C2-22.
This figure teilé whether or not the plate will buckle but will not give the
margin of safety. Given the ratios Rc, RS, and Rb: If the value of the
Rc curve defined by the given value of Rb and RS is greater numerically
than the given value of Rc’ then the panel will buckle.

The margin of safety of elastically buckled flat plates may be
determined from Fig. C2-23. The dashed lines indicate a typical application
where Rc = 0. 161, Rs:= 0. 23, and Rb = 0,38, Point 1 is the first determined
for the spécific value of Rs and Rb The dashed diagonal line from the
origin 0 through point 1, intersecting the related Rc/RS curve at point 2,
yields the allowable shear and bending stresses for the desired margin of
safety calculations, (Note: When Rc is less than Rs use the right half
of the figure; in other cases use the left half, )

E. Combined Longitudinal Bending, Longitudinal Compression,
and Transverse Compression

A theoretical investigation by Noel [4] has been performed on

the buckling of simply supported flat rectangular plates under critical
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combinations of longitudinal bending, longitudinal compression, and lateral
compression. Interaction curves for these loadings are presented in Fig. C2-24
for various plate aspect ratios. These curves can be used for the limiting

case of two loading conditions by setting one stress ratio equal to zero. The
results of the studies leading up to (and verified by) these curves indicate

that the reduction in the allowable bending stress due to the additon of lateral
compression is greatly magnified by the further addition of only a small
longitudinal compressive load,

F. Combined Bending, Shear, and Transverse Compression

Interaction surfaces for combined bending, shear, and trans-
verse compression have been established by Johnston and Buckert [5] for
infinitely long plates. The two types of support considered were simple
support along both long edges, and simple support along the tension (due to
bending) edge with clamping along the compression (due Lo bending) edge.
The resulting curves are shown in Fig. C2-25 and C2-26.

In the case of transverse compression and shear acting alone,
Batdort and Houbolt [6] examined long plates with edges elastically restrained.
It was fqund that an appreciable fraction of the critical stress in pure shear
may be applied to the plate without any reduction in the transverse compres-
sive stress necessary to produce buckling, Batdorf gmd Stein [7] examined
simply supported plates of finite aspect ratio and found that the curve for

infinitely long plates required modification for finite aspect ratios. This

condition is shown in Fig. C2-27.
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G. Combined Longitudinal Compression, Transverse Compression,
and Shear

Johnson [8] has examined critical combinations of longitudinal
compression, transverse compression, and shear for simply supported flat
rectangular plates. The calculated data are presented graphically in
Figs. C2-28 through C2-32. To make use of these curves, the following
procedure must be observed:

1. Calculate the ratiosk /k =N /N andk /k =N /N .,
xX'"s x's v s "y s

2. On the curve corresponding to the plate a/b, lay off a
straight line from the origin of kx/ ks.

3. At the intersection of this line and the curve corresponding
to the ky/ks ratio of step i, read ky and/or ks'

4. Determine required plate thickness from

k T E 3
Nx = (fx) (t)y = T .
appl. 12(1 - Ve ) b
or
(Nx) B (Ny) B (NS) B
¢ _ appl. _ appl. _ ___appl.
req'd. k k k
X y s
where

2y 1.2
12(1-ve)b

B =
mE

If desired, the value of ky may be determined from ks and ky/ks.
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5. Determine the margin of safety. Assuming that the loads
increase at the same rate and are therefore in the same proportion to each

other at all load levels, the margin of safety based on load is given by

N__ ty 3
M.S. = |+ 1= | =] -1
appl. req'd.
where t q is the design thickness. Margin of safety based on stress is
given by
f t 2
ms = () -1 - (S 1
appl. req'd.
EXAMPLE:

Consider a simply supported plate with a = 10in., b=5in.,
t=0.05{in., v =0.30, E = 107 Ib/in. ?, N =100 b/in. , Ny = 32 Ib/in. ,
and NS = 80 lb/in. Determine the margin of safety.

Calculate the stress ratios and load ratios:

32/80 = 0. 4

il

ky/ks = Ny/NS

il

kx/ks = Nx/Ns 100/80 = 1. 25

On Fig, C2-33, the interaction curves for a/b = 2, lay off a line
from the origin of slope kx/ks =1, 25. The intersection of this line with the
curve ky/ks = 0.4 determines the critical bucklir.lg coefficients for three
loads. From Fig. C2-33, the following values are obtained:

k =2.5 , k =20 , and k /k =0.4 ;
X s y s

therefore, ky = 0, 8.
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To determine the plate thickness required to sustain these loads,

any one of the three buckling coefficients determined may be used. Using kx,

the following value is obtained:
1/3
N 12(1 -v %) b?
X e

treq.d_ =  E = 0, 048 in.
X

Since the actual design thickness is 0, 051 in., the margin of safety

based on stress is

t 2 .
d 1:(0.0512

- = + .
n 3. 048 i 0. 1289
req'd.

The margin of safety based on load is

t. ] |
M.S. = ( d ) -1 = +0,1995
t
req'd.

H. Combined Shear and Nonuniform Longitudinal Compression

Bleich [ 9] presents a solution for buckling of a plate subjected
to combined shear and nonuniform longitudinal compression as shown in

Fig. C2-33. The critical buckling coefficient is for

a21:k=3.85y2ﬁ'\132+3(-1.0+~/1+ 52—372—’ (13)

+
. 5, 34 =7

where

=
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{ / 4
E-sasi:k=3.85'yzﬁ’\/.32+3 (-1"' 1+ 232) (14)
Y
where
4 5. 224
o
y -

7.7+ 33 (1-a)3

V. Special Cases

A. Efficiently Tapered Plate

When a tapered plate has attained the state of unstable equili-
brium, instability is characterized by deflections out of thé plane of the plate
in one region only. The other portions of the plate remain essentially free
of such deflections. Th.is condition of instability constitutes an inefficient
design, since the same loading distribution presumably could be sustained
by a lighter plate tapered in such a manner that instability under the specifi.ed
loading will be characterized by deflections throughout the entire plate. For
this reason Pines and Gerard|10] have examined an exponentially tapered
simply supported plate subjected to compressive loads as shown in
Fig. C2-34. The load variation along the plate was assumed to be produced
by shear stresses small enough to have negligible influence upon the buckling

characteristics of the plate. The resulting buckling coefficient versus the

plate aspect ratio is plotted in Fig. C2-34 for various amounts of plate taper.
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B. Compressed Plate with Variable Loading

The problem of determining the buckling stress of an axially
compressed flat rectangular plate was investigated by Libove, Ferdman, and
Reusch [11] for a simply supported plate with constant thickness and a linear
axial load gradient. The curves appearing in Fig. C2-35 depict their results.
(Long plates will buckle at the end where the maximum load is applied. )

C. Elastic Foundation

Seide [12] has obtained a solution for the problem of the com-
pressive buckling of infintely long, flat, simply supported plates resting on an
elagtic foundation. It is shown that the effect of nonattachment of the plate
and foundation reduces drastically the buckling load of the plate as compared
to a plate with attached foundation.

2.1,1.2 Parallelogram Plates.

Parallelogram plates may exist in beam webs or in an oblique panel
pattern. The technology of analysis with respect to such plates is not very
well developed. However, several solutions are available which present
buckling coefficients for some basic loading conditions and boundary conditions.

I. Compression

Wittrick {13] has examined the buckling stress of a parallelogram
plate with clamped edges for the case of uniform compression in one direction.
Results in the form of buckling curves are shown in Fig. C2-36. Comparison

of these curves with those for rectangular plates shows that for compressive
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loads, parallelogram plates are move efficient than equivalent area rectangular
plates of the same length. References 14 and 15 contain solutions for simply
supported parallelogram plates subjected to longitudinal compression.

A stability analysis of a continuous flat sheet divided by nondeflect-
ing supports into parallelogram-shaped areas (Fig. C2-37) under compressive
loads has been performed by Anderson [16]. The results show that, over a
wide range of panel aspect ratios, such panels are decidedly more stable
than equivalent rectangular panels of the same area. Buckling coefficients
are plotted in Fig. C2-37 for both transverse compression and longitudinal
compression. An interaction curve for equal-sided skew panels is shown in
Fig. C2-38.

Listed in Table C2-5 is a completion of critical plate buckling
parameters obtained by Durvasula [17].

II. Shear

The buckling stress of a parallelogram with clamped edges subjected
to shear loads has also been investigated by Wittrick [18]. It is worth noting
that the shear loads are applied in sﬁch a manner that every infinitesimal
rectangular element is in a state of pure shear. For such a condition to exist,
the plate must be loaded as shown in Fig. C2-39. To signify this conditi(_)n,
the shear stresses are drawn along the y-axis in Fig. C2-40. As might

be expected, unlike a rectangular plate it was found that a reversal of the
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{direction of the shear load causes a change in its critical value. The lower
shear stress value occurs when the shear is tending to increase the obliquity
of the plate.

The smaller critical shear stress values are plotted in Fig. C2-40.
Table C2-5 presents critical shear stress parameters for both directions of

shear for several plate geometries.

2.1.1.3 Triangular Plates.

Several investigations have been perfprmed on triangular plates.
Cox and Kiein [19] analyzed buckling for normal stress alone in isosceles
triangles of any vertex angle. The results are shown in Fig. C2-41. The
buckling of a right-angled isosceles triangular plate subjected to shear along
the two perpendicular edges together with uniform compression in all direc-
tions has been considered by Wittrick [20-23]. Four combinations of
boﬁndary conditions were considered, and the buckle is assumed to be
symmetrical about the bisector for the right angle. Figure C2-42 depicts the
interaction curve in terms of shear and compressive stresses. In the limit-
ing cases, these results agree with those of Cox and Klein. In Wittrick's
study it was shown that for a plate subjected to shear only, the critical stress
is chapged considerably upon reversal of the shear. Because of this, the
interaction curve is unsymmetrical -and the critical compressive stress can

be appreciably increased by the application of a suitable amount of shear.
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2.1. 1.4 Trapezoidal Plates.

Klein [24] has determined the elastic buckling loads of simply sup-
ported flat plates of isosceles trapezoidal planform loaded in compression
along the parallel edges. Shear loads are assumed to act along the sloping
edges so that any ratio of axial loads may act along the parallel edges of the
given plate, A collocation method was used to obtain his results. The deflec-
tion function assumed does not satisfy the boundary condition for moment
along the sloping edges. However, the results are accurate enough for
practical purposes. (His results appear to be more incorrect for long plates
where the sides comprise a large percent of the plate edges.) Bucklihg curves
obtained are shown in Fig. C2-43 and C2-44.

Pope [25] has analyzed the buckling of a plate of constant thickness
tapered symmetrically in planform and subjected to uniform compressive
loading on the parallel ends. Two cases are considered:

t. Different uniform stresses applied normal to the ends, equili-
brium being maintained by shear flows along the sides (Figs. C2-45 through
C2-56).

2. Equal uniform stresses applied to the ends, with displacement
of the sides prevented normal to the direction of taper (Figs. C2-57 through
C2-60).

Boundafy conditions are such that opposite pairs of edges are either simply

supported or clamped. Pope has used a more rigorous analysis than Klein;
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and for comparable plates, Pope's results (which represent an upper bound)
are more correct and will give buckling values lower than Klein's. However,
the range of applicability of Pope's curves is limited to taper angles, 8, of
less than 15 degrees.

2.1.1.5 Circular Plates.

~ The buckling values of circular plates subjected to radial com-
pressive loads (Fig. C2-61) have been investigated [2].
It has been shown that the critical buckling stress for a circular
plate with clamped edges as shown in Fig, C2-61 is

14,
fr = _4__62_8__’2 (15)
cr a’t '

Similarly, for the case of a plate with a simply supported edge, the
critical stress is

4.20D
cr a‘t

The case of a circular plate subjected to unidirectional compression

with clamped edges has been investigated [26] and found to be

(17)

Circular plates with a cutout center hole of radius, b, subjected
to radial compressive forces have also been investigated. The critical buck-

ling stress for these plates is
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k D
fr = (18)
cr azt

where the values of k are given in Fig. C2-62.
2.1.2 STIFFENED PLATES.

Critical values of load for plate buckling are dependent upon the
flexural rigidity of the plate. The stability of the plate can be increased by
increasing its thickness, but such a design will not be economical with respect
to the weight of material used. A more economical solution is obtained by
keeping the thickness of the plate as small as possible and increasing the
stability by introducing reinforcing ribs. For rectangular plates with longi-
tudinal stiffeners, the stiffeners not only carry a portion of the compressive
load but subdivide the plate into smaller panels, thus considerably increasing
the critical stress at which the plate will buckle.

Stability analysis of flat, stiffened plates should account for both
general and local modes of instability. The general mode of instability is
characterized by deflection of the stiffeners while, for local instability,
buckling occurs with nodes along (or nearly along) the stiffener-skin
juncture. Some coupling between these two modes exists, but this effect is
usually small, and, therefore, neglected. The local instability of convention-
ally stiffened plates and integrally stiffened plates is présented in Section C4,

"Local Buckling of Stiffened Plates, "
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This section is concerned with the critical buckling load of the
plate. It should be emphasized, however, that the problem of finding the
ultimate load is distinctly different from that of finding the buckling load, and
the twb must not be confused. Ultimate loads of sheet-stringer combinations

should be calculated using Section C{.

2.1,2.1 Conventionally Stiffened Plates in Compression.
| Buckling resulting from general instability of a conventionally
stiffened blate may be determined from the general equation
2
e (L) (19)
cr  12(1-v%) \b

In this case, k is a function of several of the parameters of the stiffened
plate and t is the thickness of the skin. Design tables and charts will be
presented for the evaluation of k for both the case where the stiffeners are
parallel to the load and the case where the stiffeners are perpendicular to
the loa'd.

I. Stiffeners Parallel to Load

A. Simply Supported Plate with One Stiffener or Centerline

Consider a rectangular plate of length a, width b, and thick-
ness t, which is reinforced by a longitudinal stiffener on the centerline
(Fig. C2-63). The area of the cross section of the stiffener is A, and its

moment of inertia is I, taken with respect to the axis coinciding with the
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outer surface of the flange. The torsional rigidity of the stiffener is regarded

as small and will be neglected. Also, the following notation is used:

2
y = B _1201-»7)1 (20)
Db bt3

A .
6 = bt (21)

The coefficient <y is the ratio of the flexural rigidity of the stiffener to that
of the plate of width b, and 6 is the ratio of the cross-sectional area of the
stiffener to the area bt of the plate.

If the stiffencr remains straight the buckling mode is antisymmetric
as shown in Fig, C2-63(c). This antisymmetric displacement form will occur
when the rigidity ratio v is larger than a certain value Yy For value's of y
below 'yo, the symmetric displacement form in which the stiffener deflects
with the plate will occur. At the ratio Yo both configurations are equally
possible.

Bleich [9] has derived the following formula for X
v, = il.da + (1.25+166) a? - 5.4Na (22)

where a =a/b and 0 =6 = 0.20. Using this, the required moment of

inertia, Io’ to keep the stiffener straight is

I = 0.092bt® ¥y ; (23)
0 O
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Timoshenko [ 2] gives values of k to be used in equation (i9) for
various parameters, @, §, and v. These results are given in Table C2-6.
The values of k above the horizontal lines in Table C2-6 indicate those
proportions of the stiffener and plate for which the stiffener remains straight
when the plate buckles.

B. Simply Supported Plates Having One Stiffener Eccentrically
Located

Bleich [9] obtains solutions for a rectangular plate stiffened with
one eccentrically located stiffener as shown in Fig. C2-64. For the particular
case of by/b = 1/3, he determines a value for the moment of inertia of the
stiffener required to remain undeflected during buckling. If is

I = 1.85btd+0.4A¢t? (a=1) . (24)
Also, with this (or greater) value of I, the critical buckling coefficient, Kk,
is equal to 10, 42,

C. Simply Supported Plates Having Two Equidistant Stiffeners

For the case of two stiffeners subdividing the plate into three
equal panels, Timoshenko has obtained values for the coefficient k; these are
given in Table C2-7 for various values of the parameters, @, 6, and 7.
Bleich has obtained formulas for values of stiffener rigidity necessary for

the stiffener to remain undeflected during buckling. They are

Y, = 96 +6106+ 975 &* (25)
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for 0 <6< 0.20 and
= .0 d s
I0 0,092 bt 70 (26)
with the critical stress for the plate given by
£y 2
= 32.5E (- .
Fcr 32.5 (b) (27)

D. Plates Having More Than Two Stiffeners

When the number of stiffeners is equal to or greater than three,
the stiffened plate can be treated as an orthotropic plate. This results in the

following equation for the compression buckling coefficient:

([ 2 11/2
Az
! I
Er \\1+ —5 +
N-1( s) 0. 88A
2 1+ 1+
k - L. N bD bt -

NZ[NI:Ii (35) ”} (28)

where the terms are defined as follows:

N number of bays
A area of stiffener cross section
IS bending moment of inertia of stiffener cross section taken

about the stiffener centroidal axis
z distance from midsurface of skin to stiffener centroidal axis
D flexural rigidity of skin per inch of width, E t3/12(1 « v?)

b spacing of stiffeners
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II. Stiffeners Transverse to Load

Timoshenko [ 2] has studied plates with stiffeners transverse to the
applied load. He has obtained several limiting values of vy at which the
stiffener remains straight during buckling of the plate. These values are
given in Table C2-8 for various values of a for one, two, and three trans-
verse stiffeners.

For the case of a large number of equal and equidistant stiffeners,
the plate is considered to have two different flexural rigidities in the two

perpendicular directions. The critical stress is given as

2 2
F = —ﬂ- \/D1D2 + D3 (29)
bt

cr
where
Dy = (EI)x/ (1 - Vx vy) , flexural rigidity in longitudinal direction;
D, = (EI)y/(l - Vx Vy), flexural rigidity in transverse direction;
Dy = 1/2(uxD2+ VyDi) + Z(Gl)xy ; and

2(GI) xy is the average torsional rigidity.

2.1.2.2 Conventionally Stiffened Plates in Shear.

The simple cases of simply supported rectangular plates with one
and two stiffeners have been investigated by Timoshenko. Tables C2-9 and
C2-10 give the limiting values of the ratio 7y in the case of one stiffener

and two stiffeners, respectively.
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Additional analysis of stiffened plates in shear is given in Section
C4. 4. 0 and in Section B4. 8. 1.

2.1.2.3 Conventionally Stiffened Plates in Bending.

The case of a rectangular plate reinforced with a longitudinal
stiffener under bending load is common in the design of webs for shear beams.

For this case, reference should be made to Section B4. 8. 1. 1.

2.1.2.4 Plates Stiffened With Corrugations in Compression.

A method is presented below for the analysis of corrugated plates
subjected to a cc;mpressive load applied parallel t£) the corrugations. Both
general and local instability modes of failure are treated. General instability
results in complete failure of a corrugated plate, since the corrugations aré
unable to develop post-buckling strength. In the case of local instability,
however, the corrugations can usually develop some post-buckling strength.
However, it is recommended that the lower compression buckling stress
calculated for .these two modes of failure be considered ultimate, It is
assumed that the corrugated edges are supported in such a2 manner that the
load is uniformly applied along these edges. All edges are assumed to be
simply supported.

The compression buckling stress for the general instability mode
of failure may be found by orthotropic plate analysis to be

k mE
o c

{ 2
For =" T2(1-09 (E) (30)
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121 ( a )2 ( d ) 2 (
- 2 a2 a
where ko (1 ){ i \b (1 2v+2 and
other terms are defined as follows:
Ec modulus of elasticity in compression
a length of the loaded edge of the plate
b plate dimension in the direction parallel to the load

d centerline to centerline spacing of corrugations
L developed length per width d
I moment of inertia of width d about neutral axis
When the plate aspect ratio a/b is greater than approximately
1/3, the computations above may be simplified since the corrugated plate
behaves approximately as a wide column. For these cases, the following
equation applies:

mE I
(¢}

Fc =" TLtpe

(31)

The compression buckling stress for the local instability mode of
failure may be found from the following equation when the corrugation is
composed of flat elements:

k n*E
o

c t
— —————— - 32
FCC n 12(1_1/2) (b) ( )
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where kc represents simply supported edge conditions and is taken from
Fig. C2-5, t is the thickness of the plate, and b is the width of the widest
flat plate element of the corrugation form. The latter dimension may best
be described by presenting some typical examples such as those shown in
Fig. C2-65.

In the case of Fig. C2-65(d), the compression buckling stress for
local instability should be based on the buckling of an axially load cylinder
of radius R (see Section C3. 1).

2.1.2.5 Plates Stiffened With Corrugations in Shear.

Plates stiffened with corrugations may provide a structural weight
advantage for light shear loading conditions. Both local and general instability
modes of failure are treated in the following methods of analysis. It is
assumed in these methods that support for the corrugated edges of the plate
is such that the unbuckled form of the corrugation cannot be distorted. This
condition means that in the unbuckled state an externally applied shearing
force will produce only shearing stresses in the corrugated plate {i.e., no
bending or torsion). In practice, this condition may be met by welding or
brazing, or by rigﬁrous mechanical joining of the corrugated plate to, for
instance, a spar cap on the inner surface of a wing skin.

General instability results in the complete failure of the corrugated
plate because the corrugations are unable to redistribute stresses in this

mode for the development of post-buckling stress. In contrast, local
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instablility of the corrugations does not necessily mean failure, since some
post-buckling strength can be developed for that case. It is recommended,
however, that the lower shear buckling stress calculated here for these two
modes of failure be considered ultimate.

The shear buckling stress for the general instability mode of .

failure is from Reference 1:

4

F, = —42—1‘- N'D;(D;)® when H> 1 (33)

F =1 Ak N Dy Dj when H< 1 (34)
Scr bzt

where D; and D, are the flexural stiffnesses of the plate in the x and y
directions, respectively; D; is a function of the torsional rigidity of the plate,
and H is equal to '\/_D—i_ﬁ; /D3. The values for k are taken from Fig. C2-66
or C2-67.

For general instability analysis, the optimum orientation of the
corrugations for a reversible shear flow is parallel to the short side of the
plate. ‘ Fo;‘ this orientation, the plate flexural stiffnesses may be expressed
as follows:

E tid
C

Dy = —51 (35)

- E 1
= ¢

d

D, (36)
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Ect3L
D3 S VD1+ 12d (37)

The shear buckling stress for the local instability mode of failure

- may be found from the following equation when the corrugation form is com-

posed of flat elements:

t 2
SRR Brvraerall -V A (38)
er 12(1 - v9)

Heré kS represents simply supporied edge conditions and is taken
from Fig. C2-5. The latter dimension may best be described by referring
to some typical examples such as those presented in Fig. C2-65. In the case
of Fig. C2-65(d), the shear buckling stress for local instability should be
based on the torsional buckling of a cylinder of radius R (see Section C3. 1).

2.1, 2.6 Sandwich Plates.

Procedures for the design and analysis of sandwich plates can be
found in Reference 27 which contains the latest information in structural
sandwich technology. It contains many formulas and charts necessary to
select and check designs and its use is quite widespread in the aerospace
industry.

2.1.2.7 Plates of Composite Material.

The buckling of plates constructed of composite materials is pre-

sented in Section F and in Reference 28.



