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C 1.5.0 Torsional Instability of Columms

The critical torsional stress or load for a column is to be deter-
mined by use of the following references until this section of the
Manual is completed.

1.

Argyris, John H., Flexure-Torsion Failure of Panels,
Aircraft Engineering, June, 1954.

Kappus, Robert, Twisting Failure of Centrally Loaded Open-
Section Columns in the Elastic Range, T.M.851, N.A.C.A. 1938,

Niles, Alfred S. and J. S. Newell, Airplane Structures,
Vol. II Third Edition, John Wiley & Sons, Inc., New York,
1943,

Sechler, Ernest E. and L. G. Dunn, Airplane Structural
Analysis and Design, John Wiley & Sons, Inc., New York,
1942,
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C1.5.0 TORSIONAL INSTABILITY OF COLUMNS

In the previous sections, it was assumed that the columin was torsionally
stable; i. e., the column would either fail by bending in a plane af symmetry
of the cross section, by crippling, or by a conibination of crippling and bending.
However, there are cases in which a column will buckle either by twisting or
by a combination of bending and twisting. Such torsional buckling failures
occur if the torsional rigidity of the section is very low, as for a bar of thin-
walled open cross section. Since the difference in behavior of an open cross
section is that the torsional rigidity varies roughly as the cube of its wall
thickness, thin-walled open sections can buckle by twisting at loads well below
the Euler load. Another factor that makes torsional buckling important in thin-
walled open sections is the frequent lack of double symmetry. In such sections,
centroid and shear center do not coincide and, therefore, torsion and flexure
interact,

In this section, it will be assumed that the plane cross sections of the
column warp, but their geometric shape does not change during buckling; i. e.,
the theories consider primary failure of columns as opposed to secondary
failure, characterized by distortion of the cross sections.

Separate investigation ol primary and local buckling can necessarily
give only approximatce results heeause, in general, there will be coupling of
primary and secondary buckling, TFor torsionally stable sections, approximate
equations have been developed which include this coupling (Johnson-Euler
curves, Section C1. 3.2)., However, no attempt has been made to formulate
a theory which would include coupling of torsion and flexurc and local buckling,
therefore, an analysis would be extremely complicated.
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C1.5.1 CENTRALLY LOADED COLUMNS

Centrally loaded columns can buckle in one of three possible modes:
(1) They can bend in the plane of one of the principal axes; (2) they can
twist about the shear center axis; or (3) they can bend and twist simul-
taneously. For any given member, depending on its length and the geometry of
its cross section, one of these three modes will be critical. Mode (1) has
been discussed in the previous sections. Modes (2) and (3) will be dis-
cussed bhelow,

I Two Axes of Symmetry

When the cross section has two axes of symmetry or is point symmetric,
the shear center and centroid will coincide. In this case, the purely torsional
buckling load about the shear center axis is given by Reference 8.

(o]
where:
r, = polar radius of gyration of the seetion aboﬁt its shear center
G = shear modulus of elasticity
J = torsion constant (See Section B8,4,1-IVA)
E = Young's modulus of elasticity
I' = warping constant of the section (See Section B8. 4. 1-IV k)
£ = effective length of member

Thus, for a cross section with two axes of symmetry there are three
critical values of the axial load. They are the flexural buckling loads about
the principal axes, Px and Py , and the purely torsional buckling load, P o'

Depending on the shape of cross section and length of member, one of these
loads will have the lowest value and will determine the mode of buckling,

In this case there is no interaction, and the column fails either in pure
bending or in pure twisting, Shapes in this category include I-sections,
Z-sections, and cruciform sections.
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I General Cross Section

In the general case of a column of thin-walled open cross section,
buckling occurs by a combination of torsion and bending,  Purely flexural or
purely torsional buckling cannot occur, To investigate this type of buckling,
consider the unsymmetrical cross scetion shown in Figure C1, 5-1. The
x and y axes are the principal centroidal axes of the cross section and
xO and y0 are the coordinates of the shear center, During huckling, the

cross section will undergo translation and rotation. The translation is defined
by the deflections u and v inthe x and y directions, respectively, of

the shear center o. Thus, during translation of the cross section, point o
moves to o' and point ¢ to c¢'. The rotation of the cross section about the
shear center is denoted by the angle ¢, and the final position of the centroid
is ¢'', Equilibrium of a longitudinal element of a column deformed in this
manner leads to three simultaneous differential equations (Reference 8).

The solution of these equations yields the following cubic equation for cal-
culating the critical value of buckling load:

rz(P -P)(P _P)(P _P) - P 2\,.-?(1) m)
o\cr y cr X cr o Cr o\ cr x

- P %X%P -P) -0
cr o cr y

where
1r21131‘( T EI
P T Py L
and

p -t ETn?
¢'";;ZGJ+“_ET'-

Solution of the cubic equation then gives three values of the critical load,

Por’ of which the smallest will be used in practical applications. The

lowest value of Pcr' can always be shown to be less than the lowest of the

three parameters, Px, Py’ and P 5 This is to be expected, noting that
(

it represents an interaction of the three individual modes. By use of the
effective length, £, various end conditions can be incorporated in the
solution above,
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FIGURFE C1. 5-1. DISPLACEMENT OF SECTION DURING TORSIONAL —
FLEXURATI. BUCKLING
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III One Axis of Symmetry
If the x-axis is an axis of symmetry, then y - 0 and the eguation
for a general section reduces to ©
(p -p ){:r Z(P -P ) (P -P )_p 2x l’}: 0. (1)
cr y o\ cr x cr & cr o
There are again three solutions, one of which is pcr = Py and

represents purely flexural buckling about the y-axis. The other two are the
roots of the quadratic term inside the square brackets equated to zero, and
cive two tersional -fiexural buckling loads, The lowest torsional-flexural load
will always be below Px and Pé. It may, however, be above or belsw P_y,
Therefore, a singly symmetrical section {such as an angle, channel, or hatj
can buckie in cither of two modes, by hending, or in torsional-flexural buckling.
Which of these two aztually occurs depends or the dimensions and shape o the
given sention,

The evaluation of the buckling load from equation (1) is often lengthy
and tedious. Chajes and Winter ( Reference 7) have devised a simple and
efficient procedure for evaluating the torsional -flexural buckling load from
equation (1) for singly symmetrical scctions shown in Figure C1,5-2. I
their approach, the essential parameters and their effect on the critical
load are clearly evident, Since most shapes uscd for compression members
are singly symmetric, their method is quite usecful as described below,

A, Critical Mode of IM'ailure

Failure of singly symmectrical sections can occur either in purce bending
or in simultancous bending and twisting, Becausc the evaluation of the
torsional-flexural buckling load, rcegardless of the method used, can never
be made as simple as the determination of the Kuler load, it would be convenient
to know if there are certain combinations of dimensions for which torsional -
flexural buckling need not be considered at all. To obtain this information,

a method of delineating the regions governed by each of the two possible
modes of failure has been developed. The method is applicable to any set of
boundary conditions., For the purpose of this investigation, however, it will
be limited to members with compatible end conditions; i.e,, supports that
offer equal restraint to bending about the principal axes and to warping,
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FIGURE C1.5-2 SINGLY SYMMETRICAL SECTIONS

For sections symmetrical about the x axis, the critical buckling load
is given by equation (1). According to this equation, the load at which the
member actually buckles is either P or the smaller root of the quadratic
equation, whichever is smaller,

The buckling domain can be visualized as being composed of three regions.

These are shown schematically in Figure C1,5-3 for a section whose shape is
defined by the width ratio, b/a. Region 1 contains all sections for which IY > [x .
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In this region, only torsional-flexural buckling can occur, Seetions tor which

1 > 1 fall into Regions 2 or 3, In Region 2, the mode of buckiing depends on
XNy

o B '
the parameter té/a=, The (0 a7) i curve represents the boundary between
in

the two possible modes of failuve, It is a plot of the value ol L("’/:f3 at which
the buckling mode changes from purely [lexural to torsional-flexural. The
boundary between Regions 2 and 3 is located at the interscetion of the
(tﬁ/az)min curve with the b/a axis. Secetions in Region 3 will always fail

in the flexural mode regardless of the value of t4/a’,

Figure C1.5-1 defines these curves for angles, channels, and hat
sections. In this figure, members that plot below and to the right of the curve
fail in the torsional-flexural mode, whereas those to the left and above fail
in the pure bending mode, The curves in Figure C1, 51 also give the location
of the boundarics between the various buckling domains. lLach of the curves
approaches a vertical asymptote, indicated as a dashed line in the figurc, The
asymptote, which is the houndary between Regions 1 and 2, is located at b/a
corresponding to sections for which Ix = Iy' Scetions with b/a larger

than the transition value at the asymptote will always fail in torsional-flexural
buckling, regardless of their other dimensions. If b/a is smaller than the
value for the asymptote, then the seetion falls in Region 2 and failure can be
cither by pure flexural buckling or in the torsional-flexural mode. In this
region, the parameter, t¢/a%, will determine which ol the two possible modes
of failure is critical, In the case of the plain and lipped channel section, there
is a lower boundary Region 2, This transgition occurs where the (t/a%) Lim
curve intersects the b/a axis. Sections for which b/a is less than the value
at this intersection are located in Region 3. These sections will always fail

in the flexural mode, regardless of the valuc ol tf/a®. Tor the lipped angle
and hat sccetions the (lf/azjl, curve does not intersect the h/a axis.,

Region 3, where only ﬂexur:]ﬂ buckling occurs, does not cxist for these
sections.

B. Interaction Equation

The critical buckling load for singly symmetrical sections (x-axis is
the axis of symmetry) that buckle in the torsional-flexural mode is given by
the lowest root of

rz(P _p)(p —P)-P 2% 2 = 0 (2)
0o cr X cr @ cr o
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FIGURE C1.5-4 BUCKLING MODE QI SINGLY SYMMETRICAL SECTIONS

Dividing this equation by PXP roz, and rearranging results in the following

¢

interaction equation:

P P p? ) .
— e —— K = 1 (J)
P¢ Px (quPx
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in which
X \2
K = 1 -<;3) (4)
o

is a shape factor that depends on geometrical properties of the cross section.

Figurce C1.5-5 is a plot ol equation (3). This plot provides a simpic
method for checking the safety of a column against failure by torsional -
flexural buckling,

To determine if a given member can safely carry a certain load, P, it
is only necessary to compute PX and P " for the section in question and then,

knowing K, use the correct curve to check whether the point determined by
the arguments P/Px and P/Pd) falls below (safe) or above (unsafe) the

pertinent curve. If it is desired to determine the critical load of a member
instead of ascertaining whether it can safely carry a given load, use

i
P =-—|(p P\ - P\, _ 4KP P 5
cr ZK[( o x) \'[(pd) ’ x) KD, :\] (5)
which is another form of equation (3),

The interaction equation (eq. 3) indicates that Pcr depends on threc
factors: the loads, Px and P(b, and the shape factor, K. PX and P(b are

the two factors which interact, while K determines the extent to which they
interact. The reason bending und twisting interact is that the shear center
and the centroid do not coincide. A decrcase in x , the distance between these
points, therefore causes a decrease in the intcractcfon.

To evaluate the torsional-flexural buckling load by means of the inter-
action equation, it is necessary to know P o and K. A convenient method

for determining these two parameters is therefore an essential part of the pro-
cedure.

C. Evaluation of K

For any given section, K is a function of certain parameters that define
the shape of the section. Starting with equation (4) and substituting for
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FIGURE C1,5-5 INTERACTION CURVES

xo and ro, K can be reduced to an expression in terms of one or more of

these parameters. If the thickness of the member is uniform, the parameters
will be of the form b/a, in which a and b are thc widths of two of the flat
components of the section. In the case of a tee scction, for example, equation
(4) can be reduced to

4
{1 + b/al [(b/a)¥ + 1]

K =1 (6)
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in which b/a is the ratio of the flange to the Teg width (Fig, C1,5-2).

In general, the nuniber of elements of which a section is composed and
the number of width ratios required to define its shape will determine the
complexity of the relation for K, Decause all cqual-legged angles without
lips have the same shape, K is a constant for this section. I'or channels
and lipped angles, K is a function of a single variable, b/a, whilc lipped
channels and hat sections require two paramectcrs, b/a and c¢/a, to define
K (Fig, C1.5-2).

Curves for determination of K have been obtained for angles, channels,
and hat scetions. These curves arce shown in Figures C1.5-6 and C1, 5-7.
A single curve covers all equal-legged lipped angle sections. The value of
K for all plain equal-legged angles, K = 0,625, is given by the point
b/a = 0 on this curve ( Fig, Ct.5-G). For hats and channels (Figure C1, 5-7),
a series of curves is given,

D. Evaluation of Pcb

The evaluation of P¢ follows the same scheme as that used to determine
K. Starting with the equation for Pb , given in Paragraph C1,5, 1-1, and sub-
¢

stituting for ro, d, and T yields

P, - pafcy(t/a)? + Cylase) ] (7)

a general relation for Pab’ in which, I = Young's modulus, A = cross-

sectional area; t = the thickness of the section; £ = effective length of the
member; a = the width of one of the elements of the section; and

C; and C, = functions of b/a and c/a, in which b and c¢ arc the widths
of the remaining elements.

Equation (4) indicates the important parameters in torsional buckling
and their effect on the buckling load, Similar to Euler huckling, P varies

directly with I and A. The term inside the bracket consists of two parts,
the St, Venant torsional resistance and the warping resistance. In the first

of these, the parameter, t/a, indicates the decrease in torsional resistance
with decreasing relative wall thickness; whereas, in the second the parameter
a/f shows the decrease in warping resistance with increasing slenderness,
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The coefficients, C; and C,, in the St Venant and warping terms are

functions of b/a and c¢/a, respectively, These terms theretore indieate the

ceffect that the shape of the section has on P,
9

Scetions composed of thin rectangluar elements whose middie Lines
intersect at a common point have negligible warping stiffness: f.e., T' = 0,

Because C, is proportional to T, the torsional buckling load of these scctions
reduces to

Py = EAC,(t/2}% . (8)

For the plain equal-legged angle, which falls into this category, Pd) can be

further reduced to

P¢ = AG(t/a)? (9)

in which G is the shear modulus of elasticity, and a is the length of one of
the legs.

In general, however, C, and C, must be evaluated. Curves for these
values are given in Figures C1.5-3, C1.5-9, and C1. 5-10 for angles, hats,
and channels.-

For other cross sections values of the warping constant, T, and location
of shear center are given in Table 1,
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TABLE 1. SHEAR CENTER LOCATIONS AND WARPING CONSTANTS

FOR VARIOUS CROSS SEC TIONS

1

« 1

t b .
| L |
e= ) —
1 A, s = shear center
. L b | tfh2b3 ¢ = centroid
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/
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b = h —1— 12 53,3
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1 72
! b |
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e F tf
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TABLE I (Continued)
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C1.5.2 SPECIAL CASES

I Continuous Elastic Supports

Consider the stability of a centrally compressed bar which is supported
elastically throughout its length and defined by coordinates hx and h

(Fig. C1.5-11).

Yo

FIGURE C1.5-11 SECTION WITil CONTINUOUS ELASTIC SUPPORTS

For this case, threc simultancous differential cquations can be obtained
(Reference 8). They are:

d’u d¥¢
EIy by + P('CET + yoa‘;[> + kx!:u + (yo - hy)@] =0
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If the ends of the bar are simply supported, that is, free to warp and to
rotate about the x and y axes but with no rotation about the =z axis, we can
take the solution of the equations above in the form

. nmz .. nmz . nrz
u = A sin 5 v = AzsmT o = A3SII’IT

Substitution of these expressions into the differential equations leads to the
evaluation of a determinant and hence to a cubic equation for the eritical 1oads

in the same manner as described in Paragraph C1, 5. 2-1.
is

The cubic cquation

AsPP + AP+ AP + Ay = 0

[ 2
Ix+Ix nm\? nm\f
A, = E 2 2 (—) (—)
2 L X +Iyy0+1xxo+]“ f +GJ£
(Ix+1y nr\!
#lkh? 4+ kn? ( )_._______.(__)
Xy k_'y)<:+k<;1>+ kx+ky A £
IT1I 10 8
Ay = - 2| 2E2 L1 w1y (ﬁ) - EGJ(I 41 (ﬂ)
LA X y £ X y)\ 2

f&kxiq (IX + 1) .
+ + kax—————-Y—A + (Ix + Iy)k¢ + (IX + Iy)] (T)
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A, = E31x1}_r(rf—{—”)lz - ¥1.6J K%)w - E’{leykx(yo - hy')l
LIK (= B )+ LIk, (ka; + kax)r] (“7'-’)8
ﬁIXGJ(kx + ky)(%”-)e + E [kaxky (% - hy)z

kaxky<xo ] hx)2 ¥ (kay * kax)k¢ Rk rjl (,_1})4

2

nm
+ —_ k
kkGJ(l) +kxky¢

+

+

+

XYy

It can be seen that the values of the coefficients to the cubic equation depend
on n. The value of n which minimizes the lowest positive root of the cubic
equation must be found. The complexity of this solution may necessitate the
use of a computer,

II Prescribed Axis of Rotation

Using the same differential equations given in the previous paragraph,
we can investigate buckling of a bar for which the axis is prescribed about
which the cross sections rotate during buckling. To obtain a rigid axis of ro-
tation, we have only to assume that kx = ky = v, Then the n axis

(Fig. C1.5-11) will remain straight during buckling and the eross scetions wiltl
_ rotate with respect to this axis. The resulting differential equation 1s:

[ET r EL(y, - hy)z * EL(x, - h ):I ‘:;j

IOP ( &£
2 2\ _ 2 2 -
- 1GJ - A + P\xo + yo) P(hx + hy) aZ + k¢¢ o .

Taking the solution of this equation in the form ¢ = A, sin n11'x

[El"+EI(y-h)2+EI -h;k"”)+(zJ+'\-w
o) = 4 Y\ O ’

cr Io (
_— 2 2 2 -2
A o ’ yo) " (hx * hy)
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we can calculate the critical buckling load in each particular case,

If the bar has two planes of symmetry, the solution is:

(Er + EIh?® + LI h? (“2“2>+ GJ + k (TT,,z )
y y X x)nﬂ_ P\ nrr .

cr h? +h? +<Io>'
X y A

In each particular case, the value of n which makes Pcr a minimum
must be found.

If the fixed axis of rotation is the shear-center axis, the solution becomes

2.2 2
1 &
ET ('nTg')-F GJ + l\’{k(’ﬂz}-g)

P _ AN )| .
Ccr

:DloH

This expression is valid for all cross-sectional shapes.

IO Prescribed Plane of Deflection

In practical design of columns, the situation arises in which certain fibers
of the bar deftect in a known direction during buckling. TFor example, if a bar
Is welded to a thin shect, as in Figurce C1.5-12, the {ibers of the bar in contact
with the sheet cannot deflect in the plane of the sheet, Instead, the fibers along
the contact plane nn must deflect only in the direction perpendicular to the
sheet. In problems of this type, it is advantagcous to take the centroidal axes,
x and y, parallel and perpendicular to the shect. Usually this means that the
axes are no longer principal axes of the cross section.

Y

FIGURE C1.5-12 SECTION WITH PRESCRIBED PLANLE GF DEFLECTION
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For this case, two simultancous differcntial cquations can be obtained
( Reference 8).

They are
div d’v d'o d’¢
— + P— - E - — - -— =0
EIx dz sz Ixy Yo hy)dz Pxo dz

Q.

I 2
. o 2 0 2 214%¢
[}:.F + LIy (yo - hy) ] a;-r - (GJ - P + Py0 - Phy )'&;r

- - h)— - =
EIxy (yo y) dz* Pxo dz% 0

These equations can be used to find the critical buckling loads for a given case.
As before, taking simple supports and a solution in the form

Tz
v = Ay sin—é-' ¢ = A;isin—%é-
The following determinant can be obtained:
2 2
T T
) - - |EI - h - Px
(2 - o) ENOEENEEN

: 2 2 , T
- - h + Px kT +1‘:1( -h)
[ By (yo y)FT o:| [ 7 y\Wo ~ y) %
I

+ GJ - K" P+ Pyl - Phy?‘]

From this determinant a quadratic equation for P is obtained from
which the critical load can be calculated in each particular case.

A2P2+A1P+A0=O
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where
IO
By = % - yo2 - M02 i hy2
A-I°~P+P2>2I° > 2
17 T A Tk x Ixhy - TA—Pcb - Iy(yo B hy)
’ zxopxy<yo ) hy>
I
Bo = -gpcbpx ' pxpy(yo ) hy>2 ) szy(yo i hy)2
2
P = Elx"?
2
P, = EI G
72
ny = hIxyp

If the bar is symmetrical with respect to the y axis, as in the casc of a
channel, the x axis and the y axis become the principal axes. Then, with
the substitution of Ixy = 0 and X, = 0, the two equations become

independent. The first of these equations gives the Luler load for buckling in
the plane of symmetry. The second equation gives

Er(ﬂ2)+ EI ( h 2(”2) + GJ
. I‘Z yyo - y) T?-Z

- \
Ao Ty

which represents the torsional buckling load for this case.
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C1.5.3 ECCENTRICALLY LOADED COLUMNS

I General Cross Section

In the previous sections we have considered the buckling of columns
subjected to centrally applied compressive loads only. The case when the
force, P, is applied eccentrically ( Fig. C1. 5-13) will not be considered.

FIGURE C1,5-13 ECCENTRICALLY APPLIED LOAD

In investigating the stability of the deflected form of equilibrium, and
considering the case of simply supported ends, the following determinant for
calculation of the critical loads is obtained ( Reference 8).



The solution of this determinant gives the following cubic equation for calcu-
lating Pcr:

AgPP + AP + AP+ A = 0

where

Ag

Ay

[l

A
I
ol

A
I
o

> + e
¢ sz 6yﬁj

4
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Ply - ¢
(yo y>
P(e - X )
X 0

pc B1 + PC 82
y N

I

b

o}
—P
+ P T

2
A

- (ey - y0)2 - (% - XO)Z:I + 1

PPep
xyy'!

[l

+

PP
y

P o 2 p X e 2 e 6 P + P
( 3) ' ) ( > ‘ 2( X 3 )
-

- 3 - 2
(B TR (e Ry )

PP
q X o




Scetion C1, 5.3
15 May 1969
Page 26

1

B, = + dA + xsz) -2

1 Ix(fAy3 ,& y y,
1 N

By = -I-y<f x*dA + fxysz) - 2x0

A A

In the general case, buckling of the bar occurs by combined bending and
torsion, In each particular case, the three roots of the cubic equation can be
evaluated numerically for the lowest value of the critical load.

The solution becomes very simple if the thrust, P, acts along the shear-
center axis, We then have

and the buckling loads become independent of each other, In this case, lateral
buckling in the two principal planes and torsional buckling may occur independ-
ently, Thus, the critical load will be the lowest of the two Euler loads, Px

?

Py , and the load corresponding to purely torsional buckling, which is:

IO
2 "p

1
efly +efly + 0
y X A

II One Axis of Symmetry

Another special case occurs when the bar has one plane of symmetry
(which is true for many common sections). Assuming that the yz plane is

the plane of symmetry ( Fig. C1,5-13) , the X 3 0. The solution for
]

the critical buckling loads is obtained in the same manner as in Paragraph L.
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A case of common interest occurs when the load, P, acts in the plane
of symmetry; then ¢ 0. When this happens, buckling in the plane of sym-

nmetry takes place independently and the corresponding critical load is the same
as the Euler load. However, lateral buckling in the xz plane and torsional
buckling are coupled, and the corresponding critical loads are obtained from
the following quadratic equation:

1 I

o, - Ane - eho - B o oy o

HI Two Axes of Symmetry

If the cross section of the bar has two axes of symmetry, the shear

center and the centroid coincide. Then Yo X, T £y - By = 0, which

simplifies the solutions of Paragraphs ] and II somewhat,
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Ci1.5.4 EXAMPLE PROBLEMS FOR TORSIONAL-FLENURAL INST;\BILITT
OF COI.UMNS g

1 Example Problem 1

Given:
— L = 60 in.
e ¢]4 = 14"
14 A=35in2
s c
6 x I, = 22.5in.4
1, = 6.05 ind
— E=10.5x 105 psi
y G=4,0x 106 psi
¢ - centroid 1=.073 in.4

s - shear center

Find critical load applied at centroid, c, and the mode of buckling. Use
general method and also use nicthod of Section C1.5. 1-111.

A, Method 1

From Section C1. 5. 1-11I, equation (5),

From Table I,

2
. W s@ { 6in
T Gbt. + ht 6la)y(l)y + e(}) T
and
t b’h?  3bt, + 2ht
r - f f w

12 ¢bt. + ht
f w
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_— (1)(40)36)2 [ 3(4)()) + 206) (1)
12 6(4)(}) + 6(1)

T = 38.4in.°

I -1 +1 +AXx?
X y 0

—
Il

22.5 + 6.05 + 3.5 (2.74)2

0
I = 54,75 in,*
[¢]
§ » Yo 54.75 5. 65 in.?
0 - A 3'5 J. LY .
21~
mEl 2 8
10.5 x 10 x 22.5
p = — X = T = »
x 7 60)% 647, 691 lbs
m2EJ 2
-y 710.5 x 10° x 6.05
P = =
y K (60)2 174, 000 lbs
P = -——71 [GJ + ET
¢ r J
(&)
1 [ 6 10,5 x 105(35.4)1#]
P =
6 Ts.65 L2 %10 (. 073) Tk
P, = 89,200 lbs
]
X, 2 (2.74)2
K =1 -(—;——) =1 - 15.65 - 0.55
0

Pcr" 3(0.55) (89,200 + 647,691)

V(89,200 + 647,691)° - 440, 55)(89,200)(647,691)]
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thercfore, critical load is 82, 727 pounds and the mode is torsional-flexural
buckling. :

B. Method 2

Check Figure C1,5-4(b) for critical mode of buckling with

b/a = 4/6

It

0,66 , c/a =0 , —t;{z— = 0. 416

Since the point plots are below the curve for c¢c/a = 0, the critical mode of
buckling will be torsional-flexural buckling.

From Figure Ct.5-7(a), K - 0,53
From Figure C1.5-10, Cy =031 and C, - 0.20

From SectionC1. 5, 1-III, equation (7),

P, = EA [c,(t/a)z + cz(a/;z,t’]

¢
0.25)2 (6 2
. 6 9. 20" o5
P(b - 10.5 x 10(3.5)[0.31( p + 0,2 60)
P, = 93,500 lbs
o}
mEl
P - —7— = 647,691 lbs
1

1 00 + 647,61
Per :3(0.53)['(93’5 647,691)

V(93,500 + 647,691) - 4(0. 53)(93,500)(647,691)}



P .= 86,668 lbs
cr

II Example Problem 2

L 3.0 y
i l_;
— ¢ g 2
~—0.2 1
1,56 | s 0.3

X
< 1il0.2
2 0.89 Given:
1.89 ~ .
— J=.053in4

-

2,0

|

o
w

E = 10.5 x 10° psi

G = 4.0 x 10% psi

Find: Critical load applied at point Q.
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¢ = centroid
s = shear center
Q = point of load application

A=21 i|'|.2

b= 4.43ind

x

| = .88 in.4

Y
L = 50in,

To locate shear center and evaluate the warping constant, refer to Table L

. - hb® 3.3(3.0)°
T b o+ by T (3.0)° + (2.0)°
Yo = - 2546 + 1.89 - 0,654
tfhz b3p.3
p oo 03637 (3)%2)°
) 12 (3)° + (2)°

T = 1.68in.°®

= -2,546

To calculate IO, B4, By refer to Paragraph C1.5.3-I:

I =1 I A 2
x+y (yo)
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[ o]
n

- 4.43 + 0.88 + (2.1)(-0.656)2

6.21 in. 4

—t
il

i
(1 e o) -,
X VA

1
By =m[(3.0)(o.3)(-1.41)3 + 3,000.2)(0.24)% + 2.0(0.3)(1.89)3]
-2(-0.656)
By = 1.66 in.
Bz = 0
TEL 205 x 10°(4.43)
P = - .0 X . _
: 77 (5077 183, 633 1bs
T2 EI
Py = oy 36,477 Ibs
A [ EI“rer 2.1 . 10.5 x 105(1 6a)n‘~’]
P - - . (] hd hd
© IO Gd + IR 6. 21 I x 10°(0.053) + (50)2 _J

P 95, 239 lbs
@

Now calculate the coefficients to the cubice equation in Paragraph C1.5.3-1:

A
0
Ay = — - - z _ - 2 .
? Io [exﬁz : eypl (ey yo) (ex yo) ] "

- 2_1 2 2
As = o1 [(0.2)(0) + (0.89)(1.66) - (0,89 + 0, 655) —(0.2-0)]+ 1

A3 = 0.6789
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A
- —lp _e Y oD _e N _epndp >N e (8
Iol:x(yo Ly) a[y(xo Lx) exfz(leiy) Lyfl(PX+Py):]
-G +P+P>
x y o

2.1
6.21

I

[183, 633(-0. 655-0. 89)? + 36,477(0-0, 2)?

-0.2(0) (183,633 + 36,477) - (0.89) (1.66) (183,633 + 36,477)]

li

-276,596

AlpPep,+PPep) @I>+p p +PP)
onyx X YyYy Xy y o X @

It

2.1
6. 21

I

[183,633(36,477)(0.2)(0) . 183,633(36,477)(0.89)(1.66)]
+ @83,633(36,477)4-36.477(95,394) +(183,633)(95,394ﬂ

31,042 x 10°

Il

- PP P
Xy ¢

i

- (183,633) (36,477) (95,394)

= - 638,985 x 102

A3p3 + A2P2 + A]P + AO - 0

lmmmwM,ﬁ+ﬁp+ﬂp+ﬂ—o

A, A, Ay



A, A A
let kK = —~ q = —L r = -4
k = -4.0742 x 10°
q = 4.5725 x 1010
r - -9.4123 x 10"
For solution of cubic, let P - X - k/3

X +aX +b -0

where

. 1/3(3q - k?)

8
n

1
-2-;(2k3 - 9kq + 27r)

a = -0,9605 x 10!°

b - 0.259 x 10!%
b2 3
Q = — +éi -0.01605 x 10%°
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, then the cubic reduces to

Since Q < 0, we have three real, uncqual roots given by

X, = -3 cos(% + 12m<) K0, 1,2
where
/b? a3) caas
¢ = arc cos TT(-? © 4539
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X = -109, 200
o

Xy = 80,324

X, = 28,876

Substitute these roots into P = x - k/3 for critical load values.

=
Il

Xy - 1/3

(-4, 0742 x 10%)
3

P, - -109,200 -
P, = 26,606 lbs
P, = 80,324 + 135,806
P, = 216,130 lbs
P; = 28,876 + 135,806
Py = 164,682 lhs

Therefore, the critical load is Py - 26,606 pounds.
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Il Example Problem 3

¢ - centroid

1 . s - shear center
| 4
€ X "= 38.4 in.®
n_ 124l 1 R S
2.74 o : ] A=21 in.2
5
G=4x108 psi by = 6.05 in 4
= 073 1, = 22.5 in.4
b4
L = 60 in. £=105x ‘06 psi

Find the critical load applied at point ¢ (centroid) with prescribed deflection
normal to plane n-n (refer to Section C1, 5. 2-1I)), For Euler buckling sbout
the x axis the critical load is

2E
P oo x L7056 x 106,090
X 72 (60)* ) S

The torsional buckling load is

2 2
A, Y o
~ 157 y\o y/ \e#/

Pyo = 1 \

— _ 2

A Yo f hy

P 2 o 2
P = 10.5x1o‘5(38.4)(65) *10.5x10“(22.5)(z.TflJ.zlz((“;G) (1x10°00, 073)
- I o

ye l’i':" ~(2.74)% 4 (102t
P = 146,672 lbs
Yo

Therefore, the critical load is PW) (146, 672 1hs) and the mode of failure is

torsional buckling, assuming no loéal failures.
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