Section B9
15 September 1971
Page 51

B9.4 ISOTROPIC THIN PLATES — LARGE DEFLECTION ANALYSIS

Large deflection theory of plates was discussed in Paragraph B9. 2. 3.
It was determined that the region covered by the classification of large deflec~
tion analysis was approximately %t <w/t> 10t . In this region, the load
resistance of plates is a combination of bending and direct tensile stress.
Solutions for available plate geometries and loads will be given in this sub-
section. Figure B9-7 gave a guide as to the regimes of membrane plates,
medium~thick plates, and thin plates. Curves are given in Fig. B9-12 for
membrane plates and for medium-thick plates. Between these two regimes is
the regime of thin plates, which generally includes most of the plate dimensions
and pressures encountered in aerospacc design,

B9.4.1 Circular Plates — Uniformly Distributed Load

A circular plate whose edge is clamped so that rotation and radial dis-
placement are prevented at the edge is shown in Fig. B9-13. The plate, loaded
by a uniformly distributed load, has a maximum deflection which is large rela-
tive to the thickness of the plate as shown in Fig. B9-13c. In Fig. B9-13d a
diametral strip of one unit width cut from the plate shows the bending moments
per unit of width and the direct tensile forces which act in this strip at the edge
ahd at the center of the plate. The direct tensile forces arise from two sources.
First, the fixed supp;)rt at the edge prevents the edge at opposite ends of a dia-
metral strip from moving radially, thereby causing the strip to stretch as it

deflects. Second, if the plate is not clamped at its edge but is simply supported
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FIGURE B9-13. BEHAVIOR OF THIN CIRCULAR PLATE

as shown in Figs. B9-13e and f, radial stresses arise out of the tendency for
outer concentric rings of the plate (such as shown in Fig. B9-13h) to retain
their original diameter as the plate deflects. In Fig. B9-13h the concentric
ring at the outer edge is shown cut from the plate. This ring tends to retain
fhe original outside diameter of the unloaded plate; the radial tensile stresses
acting on the inside of the ring, as shown in Fig. »B9-13h, cause the ring diam-

eter to decrease, and in doing so they introduce compressive stresses on every
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diametral section such as xx . These compressive stresses in the circum-~
terential dircction sometimes cause the plate to wrinkle or buckle near the

edge, particularly if the plate is simply supported. The radial stresses are
usually larger in the central portion of the plaie than they are near the edge.

Stresses have been determined for a thin circular plate with clamped

edges and the resvlts are plotted in Fig. B9-14, where obe and obc are the be?nding
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stresses in a radial plane at the edge and center of the plate, and Ute and

e are corresponding direct tensile stresses. It is noted that the bending
stress he at the fixed edge is the largest of these four stresses. The direct
tensile stresses become relatively larger as the deflection increases.

Figure B9-15 presents a set of curves.which show the relationship
between load, deflection, and stress for a thin circular plate with clamped
edges. For example, if the dimensions and the modulus of elasticity of the
plate and the load q are given, the quantity qr?/Et' can be computed. The
value of wmax/ t corresponding to this value of qr!/Et! is found from the
curve on the left. By projecting across to stress curves, corresponding stress
parameters Umaxrz/ Et? are read at the center and at the edge of the plate.

Figure B9-16 presents curves similar to those of Fig. B9-15 for a
plate whose edges are simply supported.

Also, Table B9-22 presents data for the calculation of approximate values

of deflections and stresses in uniformily loaded circular plates, both clamped and

simply supported. The deflection at the center w, is given by the equation,

3 1
Wy o) a(r
t+A(t) BE(t . (33)
Also, the stresses in the middle plane are given by

_ (W) _ AL
or—arl,(r) , crt-uTL(r) , (34)
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Table B9-22. Data for Calculation of Approximate Values of Deflections Wy
and Stresses in Uniformly Loaded Plates (u = 0. 3)

Center Edge
Boundary Conditions A B
ar=at pr=3t ar at ﬂr ﬁt
Edge
0.471 | 0.171 | 0.976 2.86 0.476 0.143 -4.40 | -1.32
Immovable
Plate
Clamped
Edge Frce
To Move 0. 146 0.171 0.500 2.86 0 -0.333 -4.40 | -1. ?2
Edge 1.852 | 0.696 [ 0.905 1.778 | 0.610 | 0.183 0 0.755
Plate Immovable | © * : . : ' )
Simply
Supported | Edge Free .
To Move 0.262 0.696 0. 295 1,778 0 0.427 0 0.755

and the extreme fiber bending stresses are given by

' Wot ' wot
o =B ETT » =B ETy . (35)

B9.4.2 Circular Plates — Loaded at the Center

An approximate solution of the problem of a circular plate loaded at the
center with either clamped or simply supported edges has been obtained in
Reference 1. Table B9-23 contains the coefficients necessary for solution of
the center deflection w, from equations (33), (34), and (35).

B9.4.3 Rectangular Plates — Uniformly Loaded

For the case of a plate with clamped edges, an approximate solution has
been obtained [1]. Numerical values of all the parameters have been computed
for various intensities of the load q and for three different shapes of the plate

b/a=1, b/a= 2/3, and b/a= 1/2 for u= 0.3 . The maximum deflections at

the center of the plate are graphically represented in Fig. B9-17, in which
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Table B9-23. Data for Calculation of Approximate Values of Deflections wy
and Stresses in Centrally Loaded Plates (u = 0.3)

Center Ldge
Boundary Conditions A B a = oL oy ﬁr B ¢
Edge
Immovable 0. 443 0.217 1,232 0. 357 0. 107 -2.198 | -0.659
Plate
Clamped
Edge Free
To Move 0.200 0.217 0. 875 0 -0.250 -2. 198 -0.659
Edge p
Plate Immovable 1.430 0.552 0. 895 0.488 0.147 0 0. 606
Simply
Supported Edge Free .
To Move 0. 272 0.552 0. 407 0 ~0.341 0 0. 606
2.0 T ”l ’ /
,I | bla=1—y
- I , /
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FIGURE B9-17. MAXIMUM DEI'LECTIONS AT CENTER FOR
RECTANGULAR PLATE WITH CLAMPED EDGES
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wmax/ t is plotted against _qb‘/ Dt . F¥or comparison, the figure also includes
the use of the theory of small deflections. Also included is the curve for

b/a = 0, which represents deflections of an infinitely long plate. It can be seen
that the deflections of finite plates with b/a < 2/3 are very close to those
obtained for an inﬁm‘tely long plate. The maximum values of the combined
membrane and bending stress are at the middle of the long sides of the plate.
They are given in graphical form in Fig. B9-18.

For the case of a rectangular plate, uniformly loaded with immovable,
simply supported edges, a solution has been obtained [1]. Values for mem-
brane stresses and extreme fiber bending stresses are given in Figs. B9-19
and B9-20, reépectively. An approximate equation for maximum deflection,

w, , at the center of the plate in terms of the load q is given by:

woEt? wo\2

q= "3 [1.37+1.94(—t- ] (36)
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B9.5 ORTHOTROPIC PLATES

Bg9.5.1 Rectangular Plate

The deflection and the hending moments at the center of an orthotropic
rectangular plate can be calculated from the following equations obtained from

Reference 1.

qgb

w=a T . , (37)
y
- D 2
E" x 19¢2
M, = (ﬁf*ﬁzf.; B;)—e— : (38)

=
|

E" D
y = (ﬁ2+31E_',/BX)QUb2 ’ (39)

Y X

where «, 3y, and 8, are numerical coefficients given in Table B9-24 and

(40)

m
1!
ol I+

The four constants E;; . E'y , E", and G in equations (37), (38), and
(39) are needed to characterize the elastic properties of a mateﬁal in the case
of plane stress. These four constants are defined by cquations (8) of
Section B9.2.1.1. Equations {41) through (44) are expressions for rigidities
.and are subject to modifications according to the nature of the material and the

geometry of the stiffening.

oo E' b | (41)
X 12

E' h
D = —f— (42)

y 12
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E''h
Dl = 12 (43)
Gh?
Py = 12 (44)

Table B9-24. Constants ¢, 84, and 8, for A Simply Supported
Rectangular Orthotropic Plate with H =+ Dny

€ [0 B © By
1.0 | 0.00407 0. 0368 0. 0368
1.1 0. 00438 0. 0359 0. 0447
1.2 0. 00565 0. 0344 0. 0524
1.3 0.00639 | 0.0324 0. 0597
1.4 0. 00709 0. 0303 0. 0665
1.5 0. 00772 0. 0280 0. 0728
1.6 0. 00831 0.0257 | 0.0785
1.7 0. 00884 0. 0235 0. 0837
1.8 0. 00932 0. 0214 0. 0884
1.9 0. 00974 0. 0191 0. 0929
2.0 0. 01013 0. 0174 0. 0964
2.5 0. 01150 0. 0099 0.1100
3,0 0. 01223 0. 0055 0. 1172
4.0 0. 01282 0.0015 | 0.1230
5.0 0. 01297 0. 0004 0. 1245
® 0. 01302 0.0 0. 1250

All values of rigidities based on purely theoretical considerations should
be regarded as a first approximation and tests are recommended to obtain more
reliable values. Usual values of the rigidities for three cases of practical

interest are given below.
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1. Plate Reinforced By Equidistant Stiffeners In One Direction: Con-
sider a plate reinforced symmetrically with respect to its middle plane as shown
in Fig. B9-21. The elastic constants of the material of the plating are E and
v, E' the Young's modulus, and I the moment of inertia of a stiffener, taken

with respect to the middle axis of the cross section of the plate. The rigidity

values are stated by equations (45) and (46):

Eh3 . : .
IO (4)

Eh3 E'I]
D =
y 12(1 - v?) * ay ! (46)

[ 1]
o
L—

FIGURE B9-21. ORTHOTROPIC PLATE WITH EQUIDISTANT STIFFENERS

2. Plate Cross-5Stiffened By Two Scts Of Equidistant Stifteners: Assime

the reinforcement to remain symmetrical about the plating. The moment of
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inertia of one stiffener is I, , and by is the spacing of the stiffeners in the

x-direction. The corresponding values for stiffeners in the y-direction are I,

and a, . The rigidity values for this case are stated by equations (47), (48),

and (49):
D, = 12(?131;2) “Et;li ! (47)
Dy = 12(?1-3;;2).+ E;llz ’ (49)
B e @)

3. Plate Reinforced By A Set Of Equidistant Ribs: Refer to Fig. B9-22
and let E be the modulus of the material, I the moment of inertia of a T-section
of width a; , and a=h/H. Then, the rigidities are expressed by equations

(50), (51), and (52):

Ealhs .
D =
x  12(a;-t+a’t) O’ (50)
EI
D = — - 51
Y = B (51)
D =0 . ' (52)

The effect of the transverse contraction is neglected in the foregoing equations.

The torsional rigidity may be calculated by means of equation (53):

D, = DY +2—2: . (53)

in which l')'xy is the torsional rigidity of the plate without the ribs and C the

torsional rigidity of one rib.
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FIGURE B9-22. ORTHOTROPIC PLATE WITH STIFFENERS ON ONE SIDE
Formulas for the elastic constants of platcs with integral waffle-like

stiffening can be found in Reference 6.
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STRUCTURAL SANDWICH PLATES

Small Deflection Theory

The information presented for the small deflection theory was obtained

from Reference 7.

Structural sandwich is a layered composite formed by bonding two thin

facings to a thick core. The main difference in design procedures for sandwich

structural elements and those of homogeneous material is the inclusion of the

effects of core shear properties on deflection, buckling, and stress for the

sandwich. The basic design principles for a sandwich can be summarized in-

to four conditions as follows:

1.

Sandwich facings shall be at least thick enough to withstand chosen
design stresses under design ultimate loads.

The core shall be thick cnough and have sufficient shear rigidity and
strength so that overall sandwich buckling, excessive deflection,
and shear failure will not occur under design ultimate loads.

The core shall have high e¢nough moduli of clasticity and the sand-
wich shall have great enough flatwise tensile and compressive
strength so that wrinkling of cither facing will not occur under
design ultimate loads.

If the core is made of cellular or corrugated material and dimpling

. of the facings is not permissible, the cell size or corrugation spacing

shall be small enough so that dimpling of cither facing into the core

spaces will not occur under design ultimate loads.
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B9.6.1.1 Basic Principles for Design of Flat Sandwich Panels under

Uniformly Distributed Normal Load

Assuming that a design begins with chosen design stresses and deflections
and a given load to transmit, a flat rectangular or circular panel of sandwich
construction under uniformly distributed normal load shall be designed to comply
with the four basic design principles.

Detailed procedures giving theoretical formulas and graphs for deter-
mining dimensions of the facings and core, as well as necessary core proper-
ties, for simply supported panels are given in the following paragraphs. Double
formulas are given, one formula for sandwich with isotropic facings of different
materials and thicknesses and another formula for sandwich with each isotropic
facing of the same material and thickness. Facing moduli of elasticity, E; ,,
and stress values, Fi’z, shall be compression or tension values at the condi-
tion of use; that is, if application is at elevated temperature, then facing prop-
erties at elevated temperature shall be used in design. For many combinations
of facing materials it will be advantageous to choose thicknesses such that
Eit; = Eot, . The following procedures are restricted to linear elastic behavior.

B9.6.1.2 Determining Facing Thickness, Core Thickness , and Core Shear
Modulus for Simply Supported Flat Rectangular Panels

This section gives procedures for determining sandwich facing and core
thicknesses and core shear modulus so that chosen design facing stresses and
allowable panel deflections will not be exceeded. The facing stresses, produced

by bending moment, are maximum at the center of a simply supported panel
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under uniformly distributed normal load. If restraint exists at panel edges,

a redistribution of stresses may cause higher stresses near panel edges. The
procedures given apply only to panels with simply supported edges., Because
facing stresses are caused by bending moment, they depend not only upon facing
thickness but also upon the distance the facings are spaced, hence core thick-
ness. Panel stiffness, hence deflection, is also dependent upon facing and

core thickness.

If the panel is designed so that facing stresses are at chosen design
levels, the panel deflection may be larger than allowable, in which case the
core or facings must be thickened and the design facing stress lowered to meet
deflection requirements. A solution is presented in the form of charts with
which, by iterative process, the facing and core thicknesses and core shear
modulus can be determined.

The average facing stress, F(stress at facing centroid) , is given by

the theoretical formulas:

b2
Fi,o = KziptTT (for uncqual facings) (54)
and
2
F = sz'b— (for cqual facings) , (55)
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where p is the intensity of the distributed load; b is the panel width; h is
the distance between facing centroids; t is facing thickness; 1 and 2 are
shbscripts denoting facings 1 and 2; and K, is a theoretical coefficient
dependent on panel aspect ratio and sandwich bending and shear rigidities.
If the core is isotropic (shear moduli alike in the two principal directions),
K, values depend only upon panel aspect ratio. The values of K, for sand-
wich with orthotropic core are dependent not only on panel aspect ratio but

also upon sandwich bending and shear rigidities as incorporated in the param-

2
eter V= -::—2% which can be written as:
nztcE1t1E2t2
V= AbTG_(Eqt; + E,) - (56)
wztcEt ,
V = 27xb2Gc (for equal facings) , (57)

where U is sandwich shear stiffness; E is modulus of elasticity of facing;
A=1-p?; p is Poisson's ratio of facings [in formula (56) it is assumed that
M= py= up); and Gc is the core shear modulus associated with axes ﬁarallel

to panel side of length a and perpendicular to the plane of the panel. The core
shear modulus associated with axes parallel to panel side of width b and per-
pendicular to the plane of the panel is denoted by (RGc) .

Solving equations (54) and (55) for h/b gives

(58)
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(for equal facings) . (59)

=i =)

A chart for solving formulas (58) and (59) graphically is given in
Fig. B9-23. The formulas and charts include the ratio t/h , which is usually
unknown, but by iteration satisfactory ratios of t/h and h/b canbe found.

The deflection, 6 , of the panel center is given by the theoretical

formula:
K; AFy,; Eq,2t1, 2,2 (
5 = —* 1 4 e ) 60
K, E1,2 E2,1t2y1 h
K1 2
5 = 2 i . LEE . .%_ (for equal facings) (61)

where K, is a coefficient dependent upon panel aspect ratio and the value

of V.

Solving equations (60) and (61) for h/b gives

Ky AF,2 Eq, 2t 2
— 1+
Kon Ky Ey,1t2,1

% (62)
o
h
|2 [ ax
o VKN E
B: T — (for equal facings) . (63)

=gl o)
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Charts for solving formulas (62) and (63) are given in Figs. B9-24,

B9-25, and B9-26. Use of the equations and charts beyond §/h= 0.5 is
not recommended.

B9.6.1.3 Use of Design Charts

The sandwich must be designed by iterative procedures; these charts
enable rapid determination of the various quantities sought. The charts were
derived for a Poisson's ratio of the facings of 0.3 and can be used with small
error for facings having other values of Poisson's ratio.

As a first approximation, it will be assumed that V= 0. If the design
is controlled by facing stress criteria, as may be determined, this assumption
will lead to an exact value of h if the core is isotropic, to a minimum value
of h if the core is orthotropic with a greater core shear modulus across the
panel width than across the length, and to too large a value of h if the core
is orthotropic with a smaller core shear modulus across the panel width than
across the length. If the design is controlled by deflection requirements, the
assumption that V = 0 will produce a minimum value of h. The valueof h
is minimum because V = 0 if the corc shear modulus is infinite. For any
actual core, the shear modulus is not infinite; hence a thicker core must be
used.

The following procedure is suggested:

1. Enter Fig. B9-23 with desired values for the parameters b/a and

p/Fl’2 » using the curve for V=0 . Assume a value for t; ,/h and determine
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FIGURE B9-25. CHART I'OR DETERMINING h/b RATIO FOR FLAT
RECTANGULAR SANDWICII PANIL, WITH ISOTROPIC FACINGS AND
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NORMAL LOAD PRODUCING DETLECTION RATIO 6/h
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h/b. Compute h and ty ,. Modify ratio ty, ,/h if necessary and determine
more suitable values for h and t; ,.

2. Enter Fig. B9-24 with desired values for the parameters b/a ,
E,ty/Eity, and AF,/E,, using the curve for V= 0. Assume a value of 6/h
and determine h/b . Compute h and 6 . Modify ratio 6/h if necessary and
determine more suitable values for h and 4§ .

3. Repeat steps 1 and 2 using lower chosen design facing stresses until

h determined by step 2 is equal to, or a bit less than, h determined by step 1.

4. Compute the core thickness, tc » using the following formulas:

t1+t2
tc = h— ) (64)

i

t
c

h-t (for cqual facings) . (65)
This first approximation was bascd on a core with an infinite shear mod-
ulus. Since actual core shear modulus values are not very large, a value of tc
somewhat larger must be used. Successive approximations can be made by
entering Figs. B9-23 and B9-24, B9-25, or B9-26 with values of V as com-
puted by equations (56) and (57). TFigurc B9-23 includes curves for sandwich
with isotropic and certain orthotropic cores. VFigure B9-24 applics to sandwich
" with isotropic core (R =1) . Figure 39-25 applics to sandwich with orthotropic
cores for which the shear modulus associated with the panel width is 0.4 of the

shear modulus associated with the pancl length (R = 0.4) . Tigurc B9-26 applies

to sandwich with orthotropic cores for which the shear modulus associated with
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the panel width is 2.5 times the shear modulus associated with the panel length
(R = 2- 5) .
NOTE: For honeycomb cores with core ribbon parallel to panel length

a, G =G and the shear modulus parallel to panel width b is G For

c TL ™ °

honcycomb cores with core ribbons parallel to panel width b, Gc = GTW and
the shear modulus parallel to panel length a is GTL .

In using Figs. B9-23 through B9-26 for V # 0, it is necessary to
iterate because V is dircctly proportional to the core thickness tc . As an
aid to finally determine t(: and GC , Iig. B9-27 presents a number of lines
- representing V for various values of G0 with V ranging from 0. 01 to 2 and
Gc ranging from 1000 to 1 000 000 psi. The following procedure is suggested:

1. Determine a core thickness using a value of 0.01 for V.

2. Compute the constant rclating V to Gc:

2. 1 2, 1.
7t E{t{E,t, et It
c g1z t2 ! ¢

(for equal facings) = VG .
A.bz(Eiti + Ez(z) 27\1)2 ¢

3. With this constant, enter Fig. B9-27 and determine necessary Gc .
4. If the shear modulus is outside the range of values for materials
avai}able, follow the appropriate line of Fig. B9-27 and pick a new value of
V , for reasonable value of core shear modulus.
5. Recnter Figs. B9-23 through B9-26 with the new value of V and

repeat all previous steps.
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B9.6.1.4 Determining Core Shear Stress

This section gives the procedure for determining the maximum core
shear stress of a flat rectangular sandwich panel under uniformly distributed
normal load. The core shear stress is maximum at the panel edges, at mid-
length of each edge. The maximum shear stress, Fcs ,» is given by the

formula:

- b (66)
Fos = Ky

where K; is a theoretical coefficient dependent upon panel aspect ratio and
the parameter V . If the core is isotropic, values of V do not affect the core
shear stress.

The chart of Fig. B9-28 presents a graphical solution of formula (66).
The chart should be cntered with values of thicknesses and other parameters
previously determined.
B9.6.1.5 Checking Procedure

The design shall be checked by using the graphs of Figs. B9-29, B9-30,
and B9-31 to determine thecoretical coefficients Ky, K;, and K; to compute
facing stresses, deflection, and core shear stresses.

B9.6.1.6 Determining Facing Thickness, Core Thickness, and Core Shear
Modulus for Simply Supported Flat Circular Panels

This section gives procedures for determining sandwich facing and core
thicknesses and core shear modulus so that chosen design facing stresses and

allowable panel deflections will not be cxceeded. The facing stresses, produced
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FIGURE B9-29. K, FOR DETERMINING FACING STRESS, F, OF FLAT
RECTANGULAR SANDWICH PANELS WITH ISOTROPIC FACINGS AND
ISOTROPIC OR ORTHOTROPIC CORE (SEE SKETCH) UNDER
UNIFORMLY DISTRIBUTED NORMAL LOAD
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FIGURE B9-30. K, FOR DETERMINING MAXIMUM DEFLECTION, o, OF
FLAT RECTANGULAR SANDWICH PANELS WITH ISOTROPIC FACINGS
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UNIFORMLY DISTRIBUTLED NORMAL LOAD
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- FIGURE B9-31. K,; FOR DETERMINING MAXIMUM CORE SHEAR STRESS,
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by bending moment, are maximum at the center of a simply supported circular

panel under uniformly distributed normal load. If restraint exists at panel
edges, a redistribution of stresses may cause higher stresses near panel edges.
The procedures given apply only to panels with simply supported edges, isotro-
pic facings, and isotropic cores. A solution is presented in the form of charts
with which, by iterative process, the facing and core thicknesses and core shear

modulus can be determined.

The average facing stress, T (stress at facing centroid), is given by the

theoretical formulas

_ 3+rp  pr?
F1,2—

16 t,,h (67)
2
F = i%éﬂ %:;' (for equal facings) , (68)

where p is Poisson's ratio of facings [in formula (67), it is assumed that
4= [4= [y] ; T is the radius of the circular pancl; and other quantitics are as

previously defined (see Section B9.6.1.2).

h
Solving cquations (67) and (68) for 7 gives

P
Fy 2
L ’ (69)
r t1,2
4 h
NEEST !.P..
% = = L (for equal facings) . (70)

w'h
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A chart for solving formulas (69) and (70) graphically is given in Fig. B9-32,

The formulas and chart include the ratio t/h, which is usually unkndwn, but by

iteration satisfactory ratios of t/h and h/r can be found.

S & g ¢ & &
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FIGURE B9-32. CHART FOR DETERMINING h/r RATIO FOR FLAT
CIRCULAR SANDWICH PANEL, WITH ISOTROPIC FACINGS AND
CORE, UNDER UNIFORMLY DISTRIBUTED NORMAL LOAD SO
THAT FACING STRESS WILL BE F; 534 = 0.3
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The deflection, 8, of the panel center is given by the theoretical formula:
2
N (1 , Ei,z%,a)?\Fi,zr (1)
! Eg,ite 1/ Eq0h
AF r? )
b = 2K, T T (for equal facings) , (72)

where K, depends on the sandwich bending and shear rigidities as incorporated

2
D
in the parameter V = ——=3= which can be written as

(2r)?U
ﬂ'zt E[t1E2t2
v — (73)
4Ar°G (Eqty + Egty)
1r2tCEt
V = a;ré: (for equal facings) , (74)

where r is panel radius and all other terms are as previously defined in Section
B9.6.1.2

Solving equations (71) and (72) for -}Il_ , gives

AFy o Ey, b0
VK, — 1 —/—=
h Eq Ey 1,1 |
h
RN
el I (for equal facings) . (76)
h

A chart for solving formulas (75) and (76) is given in Fig. B9-33. Use of the

equations and charts beyond 6/h = 0.5 is not recommended,
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B9.6.1.7 Use of Design Charts
The sandwich must be designed by iterative procedures and the charts
enable rapid determination of the various quantities sought. The charts were
derived for Poisson's ratio of the facings of 0. 3 and can be used with small
error for facings having other values of Poisson's ratio.
As a first approximation, it will be assumed that V= 0. If the design
is controlled by facing stress criteria, as may be determined, this assumption
will lead to an exact value of h, If the design is controlled by deflection require-
ments, the assumption that V= 0 will produce a minimum value of h. The value
of h is minimum because V = 0 if the core shear modulus is infinite. For any
actual core, the shear modulus is not infinite; hence a thicker core must be

used.

The following procedure is suggested:

1. Enter Fig. 'B9-28 with the desired value for the paramcter
1,2

Assume a value for —t—‘}-li and determine h/r. Compute h and t, ,.

U2
Modify ratio 'f— if necessary and determine more suitable values

for h and ty .

Eyty
2. Enter Fig. B9-33 with desired values of the parameters I and
1Y
AF,
N and assume V =0, Assume a value for 6/h and determine h/r.
2

Compute h and §. Modify ratio 6/h if necessary and determine

more suitable values for h and 8.
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3. Repeat steps 1 and 2, using lower chosen design facing stresses,
until h determined by step 2 is equal to, or a bit less than, h deter-
mined by step 1.

4, Compute the core thickness tc, using the following formulas:

t =n-atb

c 2

t

. h -t (for equal facings) .

This first approximation was based on a core with an infinite shear
modulus. Since actual core shear modulus values are not very large, a value
of tc somewhat larger must be used. Successive approximations can be made
by entering Fig, B9-33 with values of V as computed by equations (73) and (74).

In using Fig. B9-33 for V# 0 it is necessary to iterate because V is
directly proportional to the core thickness tc. As an aid to finally determine
tc and Gc, Fig. B9-27 can again be used. The constant relating V to Gc may

be computed from the formula

2t EtE,t, 7%t Et
VG = > or | —>3] (for equal facings)
c ATHEt; + E,t) 8Ar

With this constant, Fig. B9-27 may be entered. Use of the figure is as
deséribed in Section B9.6.1.3.
B9.6.1.8 Determining Core Shear Stress

This section gives the procedure for determining the maximum core

shear stress of a flat circular sandwich panel under uniformly distributed
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normal load. The core shear stress is maximum at the panel edge. The maxi-

mum shear stress, ch, is given by the formula

_ br
ch = 3 . (77)

B9.6.1.9 Checking Procedure
The design shall be checked by computing the facing stresses using

equation (67) and the deflection using equation (71). The value of K, to be used

in equation (71) is given by

16 (5 + p)w?
I TC ) [64(1 - uy " V] ! (78)

which reduces K;= 0.309 + 0,491V when = 0.3, Values of V may be com-
puted using equation (73).
An alternate method for computing the deflection at the panel center is

given by the formula

E; ot apr?
5=K(1+ 1,21L2) - 79
’ Ey,1ta,1 / TEy, oty b o)
5= 2Ky iy (80)
- O Eth?

where

2

64(1 + p)
which reduces toK; = 0.629 + V when p = 0.3,
The core selected for the panel should be checked to be sure that it has

a core shear modulus value, Gc, at least as high as that assumed in computing
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the deflection in equation (71) and that the core shear strength is sufficient to

withstand the maximum core shear stress calculated from equation (77).

B9.6.2 Large Deflection Theory

Most of the literature classifies large deflection theory as having a
deflection-to-plate thickness ratio greater than 0.50. In Figs. B9-34, B9-35,

B9-36, and B9-~37, a small difference is noted between the linear and nonlinear

theory for deflection-to-plate ratios less than 0.50.
B9.6.2.1 Rectangular Sandwich Plate with Fixed Edge Conditions

The curves of Fig. B9-34 were obtained from Reference 8 with the fol-
lowing corresponding nomenclature for a rectangular sandwich plate with fixed
edge conditions (shear deformations are not included):

W0 Center deflection of plate

h Thickness of the core layer

a,b Half length of panel in x and y directions

A a/b

E Elastic constant of the face layers
v Poisson's ratio of the core layer
p External load per unit area

t Thickness of the face layer

Q 122’1 - ) p/th’E
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B9.6.2.2 Circular Sandwich Plate with Simply Supported Movable, Clamped
Movable, and Clamped Immovable Boundary Conditions

The curves of Figs. B9-35, B9-36, and B9-37 were obtained from
Reference 9 for a circular sandwich plate for the following states of loading
and boundary conditions:

1. Moments uniformly distributed around a simply supported,

radially movable boundary,

2. Uniformly loaded plate with a clamped, radially movable

boundary, and

3. Uniformly loaded plate with a clamped, radially immovable

boundary.
The equations are nondimenSionalizcd for each state of loading. The effect of
shear deformation is characterized by the nondirﬁensional parameter H. If
H = 0, then shear deformation is neglected; a nonzero value of H signifies

shear distortion in the core. Nomenclature of the symbols is as follows:
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Normal deflection at the plate center
Thickness of the core
Measure of effect of core shear deformation = EI%-

Applied edge moment
Radius of a circular plate
In-plane rigidity = 2E ftfz
Bending rigidity = Ett /2(1 - »2)
Applied, transverse load

Poisson's ratio of face sheet
Transverse shear rigidity = Gctc
Shear modulus of the core

Modulus of elasticity of the face sheet

Thickness of the face sheet
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