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B9 PLATES

B9.1 INTRODUCTION

Plate analysis is important in aerospace applications for both lateral
applied loads and also for sheet buckling problems. The plate can be considered
as a two-dimensional counterpart of the beam except that the plate bends in all
planes normal to the plate, whereas the beam bends in one plane only.

Because of the varied behavior of plates, they have been classified into
four types, as follows:

Thick Plates — Thick plate theory considers the stress analysis of
platés as a three-dimensional elasticity problem, The analysis becomes, con-
sequently, quite involved and the problem is completely solved only -for a few
particular cases. In thick plates, shearing stresses become important, similar

to short, deep beams.

Medium-Thick Plates — In medium-~-thick plates, the lateral load is

supported entirely by bending stresses. Also, the deflections, w, of the plate
are small compared to its thickness, t, (w < t/3). Theory is developed by
making the following assumptions:
1. There is no in-plane deformation in the middle plane of the plate.
2. Points of the plate lying initially on a normal-to-the-middle plane
of the plate remain on the normal-to-the-middle surface of the
plate after bending.
3. The normal stresses in the direction transverse to the plate can be

disregarded.
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Thin Plates — The thin plate supports the applied load by both bending
and direct tension accompanying the stretching of the middle plane. The deflec~
tions of the plate are not small compared to the thickness (1/3t < w < 10t) and
bending of the plate is accompanied by strain in the middle surface. These
supplementary tensile stresses act in opposition to the given lateral load and the
given load is now transmitted partly by the flexural rigidity and partly by a
membrane action of the plate. Thus, nonlinear equations can be obtained a;xd
the solution of the problem becomes much more complicated. In the case of
large deflections, one must distinguish between immovable edges and edges
free to move in the plane of the plate, which may have a considerable bearing
upon the magnitude of deflections and stresses in the plate.

Membranes — For membranes, the resistance to lateral load depends
exclusively on the stretching of the middle plane and, hence, bending action is
not present. Very large deflections would occur in a membrane (w > 10t).

In the literature on plates, the greatest amount of information is avail-
able on medium-thick plates. Many solutions have been obtained for plates of
various shapes with different loading and boundary conditions {1, 2]. However,
in the aerospace industry, thin plates are the type most frequently encountered.
Som-e approximate methods of analysis are available for thin plates for common
shapes and loads.

This section includes some of the solutions for both medium-thick plates
and thin plates. Plates subjected to thermal loadings are covered in Section

D3.0.7. Plates constructed from composite materials are covered in Section F.
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B9.2 PLATE THEORY
This section contains the theoretical solutions for medium-thick plates
(small deflection), membranes, and thin plates (large deflection). Solutions
for thick plates will not be given heie as this type plate is seldom used in the

industry.

B9.2.1 Small Deflection Theory

Technical literature on the small deflection analysis of plates contains
many exceilent derivations of the plate bending equations { References 1 and 2,
for instance). Therefore, only key equations will be presented here.

Figure B9-1 shows the differential element of an initially flat plate acted
upon by bending moments {per unit length) Mx and My about axes pfftrallel to the
y and x directions, respectively. Sets of twisting couples Mxy(= -Myx) also

act on the element.

Y
M
/ yx TWISTING MOMENTS
SHOWN BY RIGHT HAND
VECTOR RULE

FIGURE B9-1. DIFFERENTIAL PLATE ELEMENT
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. . Fw
Ag in the case of a beam, the curvature in the x, z plane, o is pro-
portional to the moment Mx applied. The constant of proportionality is Elf , the
3
reciprocal of the bending stiffness. For a unit width of beam, I= 31—2' . In the

case of a plate, due to the Poisson effect, the moment My also produces a

(negative) curvature in the x, z plane. Thus, with both moments acting, one

has
w12
3X2 = Et3 (MX - “My) ’

where u is Poisson's ratio. Likewise, the curvature in the y, z plane is

ow 12
—= = (M -uM
8y2 Et? ( y s x)

Rearranging these two equations in terms of curvature yields

- pf2w ., 2w
M= D(_B;T tHo ) (1)
- p(2w, 2w
M = D(—a?- +u axz) (2)
where
£t}
D= - u?) ’

The twist of the element, #w/9xdy (=8w/dydx) is the change in x-direction
slope per unit distance in the y-direction (and vice versa). It is proportional to
the twisting couple Mxy' A careful analysis (see References 1 and 2) gives the

relation as

M, = D(1 - p)gfjvay ) (3)
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Equations (1), (2), and (3) relate the applied bending and twisting
couples to the distortion of the plate in much the same way as does
M = EId%/dx® for a beam.

Figure B9-2 shows the same plate elements as the one in Fig. B9-1,
but with the addition of internal shear forces Qx and Qy (corresponding to the
"v'' of beam theory) and a distributed transverse pressure load q(psi). With
the presence of these shears, the bending and twisting moments now vary along

the plate as indicated in Fig. B9-2a.

- X

F 4

” /v P
a M, +dM,
]

Mxy Mx
< dy — Mxy + dey
T
\
M

M/y

¥X
(a)

\4

$o [

o

l

Q Q, +da,

X

o

{b)

FIGURE B9-2. DIFFERENTIAL PLATE ELEMENT WITH LATERAL LOAD
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By summing moments of the two loading sets of Figs. B9-2a and B9-2b

about the y axis, one obtains

Mdy+ (M +dM )d = dM
3 ( - yx) X+ (Qx+ de)dxdy (Mx+ x)dyw— Myxdx

Dividing by dxdy and discarding the term of higher order yields

BMX aMyx
Qx T Tax T dy ’ .(4)
or,
8Mx aMxX
= + .
Qx ox oy (42)
In a similar manner, a moment summation about the x-axis yields
8My 8M3£1
= + . 5
Q = 5 ™ (5)

[ Equations (4) and (5) correspond to V = dM/dx in beam theory. ]
One final equation is obtained by summing forces in the z-direction on

the element:

0Q.  2Q
q=—+ =3 : (6)

Equations (4), (5), and (6) provide three additional equations in the
three additional quantities Qx’ Qy, and q. The plate problem is, thus, com-
pletely defined. A summary of the quantities and equations obtained above are
presented in Table B9-1. For comparison, the corresponding items from the

engineering theory of beams are also listed.
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Class Item Plate Theory Beam Theory
Coordinates Xy X
Geometry Deflections w y
. . ow dw _dw d¥y
Distortions ox? * ay? ’ oaxay e
Structural Bending E
isti i D = El
Characteristic Stiffness 12(1 - 1)
Couples M , M, M M
X y Xy
Loadings Shears QX s Qy \4
Lateral q qorw
d*w aw
M = D W T
oment (‘8;5' " 8y2)
d?
Hooke's Distortion D(-g-zvgx + g%) M = EIEX%
Law Y
0w
. M = oy 2w
Relation Xy D(1-p) ox oy
5M aM
= X 4 Xy
o _ X ox oy dM
Equilibrium Moments vV = ax
oM aM
- Y 4 Xy
y oy ox
¥ s = & + _B_Q_l = g-‘i
orce 97 "5 dy 9= Gx
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Finally, one very important equation is obtained by eliminating all inter-

nal forces (MX, My, M , Qx’ Qy) between the six equations above, The result

Xy
is a relation between the lateral loading q and the deflections w (for a beam,

q/EI = d'y/dx!):

d'w o 3w q
+ + = 4 .
oxt T Zoa Ty T D (7)

The plate bending problem is thus reduced to an integration of equation
(7). For a given lateral loading q(x,¥), a deflection function w(x,y) is sought
which s:tisfies both equation (7) and the specified boundary conditions. Once
found, w(x,y) can be uscd in equations (1) through (5) to determine the inter-
nal forces and stresses. Often, various approximate methods are used to solve
equation (7). One of the most powerful is the finite difference technique, pre-
sented in Reference 1.

It must be emphasized that in deriving the plate-bending equations it was
assumed that no stresses acted in the middle (neutral) plane of the plate (no
membrane stresses). Thus, in sumn.ling forces to derive equation (6), no
membrane stresses were present to help support the lateral load. In the solu-
tions to the great majority of all plate-bending problems, the deflection surface
found is a nondevelopable surface, i.e., a surface which cannot be formed from
a flat sheet without some stretching of the sheet's middle surface. But, if
appreciable middle surface strains must occur, then large middle surface
stresses will result, invalidating the assumption from which equation (6) was

derived.
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Thus, pracﬁcally all loaded plates deform into surfaces which induce
some middle surface stresses. It is the necessity for holding down the magni-
tude of these very powerful middle surface stretching forces that results in the
more severe rule-of-thumb restriction that plate bending formulae apply accu-
rately only to problems in which deflections are a few tenths of the plate's
thickness.

B9.2.1.1 Orthotropic Plates

In the previous discussion it was assumed that the elastic properties of
the material of the plate were the same in all directions. It will now be assumed
that the material of the plate has three planes of symmetry with respect to the
elastic properties. Such plates are generally called orthotropic plates. The
bending of plates with more general elastic properties (anisotropic plates) is
considered in Section F, -

For orthotropic plates the relationship between stress and strain com-
ponents for the case of plane stress in the x, y plane is presented by the fol-

lowing equations:

o = E'e + EY
X X X y
o - Ef € + Bf' €
Yy yy X
= » 8
Ty Gy, (8)

TFollowing procedures outlined in Reference 1, the expression for bend-

ing and twisting moments are
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9w 9w
Mo = Dxod t Pigt (8)
oW 8w
My = Dy-g;z— Dy 52 (10)
M = o2p 2 (11)
Xy Xy oxoy
in which
E't? E't?
D = X p . _¥_ - EY . Gt
X 12’y"12’D’“12’D"12
Xy

The relationship between the lateral loading q and the deflections w becomes:

o'w o'w o'w
+ D + —— e = -
D o 2( 1 Zny) oxlay? T Dy E (12)

Equation (12) can be used in the investigation of plate bending for many
various types of orthotropic construction which have different flexural rigidities
in two mutually perpendicular directions. Specific solutions will be given in
Subsection B9.5, Orthotropic Plates.

B9.2.2 Membrane Theory

Before large deflection theory of plates is discussed, one should con-
sider the limiting case of the flat membrane which cannot support any of the
lateral load by bending strésses and, hence, has to deflect and stretch to
develop both the necessary curvatures and membrane stresses.

The two~dimensional membrane problem is a nonlinear one whose solu-
tion has proven to be very difficult [3]. However, we can study a simplified

version whose solution retains the desired general features. The one-dimensional
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analysis of a narrow strip cut from an originally flat membrane whose length in

the y-direction is very large (Fig. B9-3).

i

x

Y 2z
(a)
| a
. st qQ st

L%@"@M:‘E:Lr;‘ I
| |
[ |

z w X dx x + dx

(b) {c)

FIGURE B9-3. ONE-DIMENSIONAL MEMBRANE
Figure B9-3 shows the desired one-dimensional problem which now
resembles a loaded cable. The differential equation of equilibrium is obtained

by summing vertical forces on the element of Fig. B9-3c.

dw dw | _
St(dx " ix )+ qdx = 0
x+dx X
or
(__i_E_W__ = _.q. (13)
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where s is the membrane stress in psi. Equation (13) is the differential equa~

tion of a parabola. Its solution is

w o= ?f; (a-x) . _ (14)

The unknown stress in equation (14) can be found by computing the change in

length of the strip as it deflects. From Reference 3, this stretch 6 is

Substituting through the use of equation (14) and integrating yields

2.3

a
6 = 2.2 ]
24s“

and consideration of the stress-strain relationship yields

s=gE .
a

By equating and solving for s one finds

s = 0.347 [E(fltiﬂ%- . (15)

If equation (15) is substituted into equation (14), the maximum deflection at

x = a/2is
) i
= S—a— 3 16
Wy = 0.3602 (Et) . (16)

Solutions of the complete two-dimensional nonlinear membrane problem
have been obtained in Reference 4, the results being expressed in forms identi-

cal to those obtained above for the one-dimensional problem.
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- qa\+-
max 12 (Et) ? (17)
qa 2
Smax = n, [E (_t_)] . (18)

Here a is the length of the long side of the rectangular membrane, and

ny and n, are given in Table B9-2 as functions of the panel aspect ratio a/b.

Table B9-2. Membrane Stress and Deflection Coefficients
a/b 1.0 1.5 2.0 2.5 3.0 4.0 5.0
ny 0.318 | 0.228 | 0.16 0.125 | 0.10 0.068 | 0.052
n, 0. 356 0. 37 0.336 | 0.304 0.272 0.23 0.205

The maximum membrane stress (smax) occurs at the middle of the long

side of the panel.
Experimental results reported in Reference 4 show good agreement with
the theory for square panels in the elastic range.

B9.2.3 Large Deflection Theory

The theory has been outlined for the analysis of the two extreme cases

of sheet panels under lateral loads. At one extreme, sheets whose bending

stiffness is great relative to the loads applied (and which therefore deflect only
'slightly) may be analyzed satisfactorily by the plate bending solutions. At the
other extreme, very thin sheets, under lateral loads great enough to cause

large deflections, may be treated as membranes whose bending stiffness is

ignored.
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As it happens, the most efficientsplate designs generally fall between
these two extremes. On the one hand, if the designer is to take advantage of
the presence of the interior stiffening (rings, bulkheads, stringers, etc.),
which is usually present for other reasons anyway, then if is not necessary to
make the skin so heavy that it behaves like a '‘pure'' plate. On the other hand,
if the skin is made so thin that it requires supporting of all pressure loads by
stretching and developing membrane stresses, then permanent deformation .
results, producing "quilting'' or ""washboarding.

The exact analysis of the two-dimensional plate which undergoes large
deflections and thereby supports the lateral loading partly by its bending resis-
tance and partly by membrane action is very involved. As shown in Reference 1,
the investigation of lax.'ge deflections of plates reduces to the solution of two non-
linear differential equations. The solution of these equations in the general case
is unknown, but some approximate solutions of the problem are known and are
diécussed in Reference 1.

An approximate solution of the large deflection plate problem can be
obtained by adding the small deflection membrane solutions in the following way:

The expression relating deflection and uniform lateral load for small

deflection of a plate can be found to be

w = aﬂ'—ai (19)

max Et3
where ¢ is a coefficient dependent upon the geometry and boundary conditions of

the plate.
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The similar expression for membrane plates is equation (17)

- g'a)4
¥ max Dy a (Et ) : ’ (20)

Solving equations (19) and (20) for q' and q'' and adding the results yields

q=4q +q"
1 _Et 1 Et _ 5
= = w + = = .
17 4 (RY " max ng 2' “max (21)
a

Obviously, equation (21) is based upon summing the individual stiffnesses
of the two extreme behavior mechanisms by which a flat sheet can support a
lateral load. No interaction between stress systems is assumed and, since the
system is nonlinear, the result can be an approximation only.

Equation (21) is best rewritten as

ﬂi-l(i%):l“ _L(fmx.)a '
E' T o\ t (b) YA : (22)
Figure B9~4 shows equation (22) plotted for a square plate using values
of @ =0.0443, and n; = 0.318. Also plotted are the results of an exact analysis
[1]. As may be seen, equation (22) is somewhat conservative inasmuch as it
gives a deflection which is too large for a given pressure.
The approximate large-deflection method outlined above has serious
shortcomings insofar as the prediction of stresses is concerned. For simply

supported edges, the maximum combined stresses are known to occur at the

panel midpoint. Figure B9-5 shows plots of these stresses for a square panel
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a; j-redicted by the approximate method (substituting q' and q'' into appropriate

stress equations).

350
300 /
50l EXACT / /
APPROX. o= e mr / /7
< 200} /
& /
; 150 7l
& 74
7
100 s
-
- "
50 == LINEAR PLATE  —ugf
OL—;‘_"" - 1
0 0.5 1.0 15 2.0
w/t

FIGURE B9-4. DEFLECTIONS AT THE MIDPOINT OF A SIMPLY SUPPORTED
SQUARE PANEL BY TWO LARGE-DEFLECTION THEORIES

30 ,
EXACT

APPROX. == am =

AP

sazl Et2
\

-
10 7
//
/
0

0 50 100 150 200 250

q34/ £

FIGURE B9-5. LARGE DEFLECTION THEORIES' MIDPANEL STRESSES;
SIMPLY SUPPORTED PANEL
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B9.3 MEDIUM-THICK PLATES (SMALL DEFLECTION THEORY)
This section includes solutions for stress and deflections for plates of
various shapes for different loading and boundary conditions. All solutions in
this section are based on small deflection theory as described in Paragraph

B9.2.1.

Bg.3.1 Circular Plates

For a circular plate it is naturally convenient to express the governing
differential equations in polar coordinate form. The deflection surface of a

laterally loaded plate in polar coordinate form is

& 1 9 1 a?)(a‘zw 1 ow 1 azw) q
(8r2+rar+r2302 ot P T T2 00f) D - (23

If the load is symmetrically distributed with respect to the center of the plate,

w is independent of ¢ and the equation becomes

1 d) dj1dfdwyil _ g .
r dr {rdr l:r dr (r dr)]} - D ) (24)

The bending and twisting moments are

ot 1 aw 1 azw)
-~ D|<¥ LA . 25
Mr [aﬂ * p(r or T I 09° (25)
1 aw 1 ow a?w)
M = Df= £ 45 &%, ¥ 26
t (r ar ¢ 90t T Mo (26)
1 Bw 1 ow
M= (1’“)D(r oro0 | 1l ae) (27)

B9.3.1.1 Solid, Uniform-Thickness Plates
Solutions for solid circular plates have been tabulated for many loadings

and boundary conditions. The results are presented in Table B9-3.
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Table B9_3. Solutions for Circular Solid Plates

971

Case Formulas For Deflection And Moments
Supported Edges, w = ga® (a?-r?) w - {5+ qat
Uniform Load 16D(1+p) max 64(1+p) D
q = A4 2. 2 = ™ - i 9
I TT) M, = e M) ax = Mgy = g @
= o2, I PR
M, = Jelat(sHn) ré(1+3p))
At Edge
0 = Pa
8 {1 +)
Clamped Edges, w = 2 {@2-r?) ga!
Uniform Load 64D max 64D
3 R Y
ITI11} L
-gal
(Mr)max at r=a = —(L-R
M, = [af(1+) - ri(13p)]
t 16
g
= 14
™M) o ()
. 2.2
Supported Edges, Uniform P _J3tp o o 2 r 2[1 r _l-p a-r ]}
Load Over Concentric ¥ = 16D 1+,u(a ) o+ oer gy + coflegy 2(1+p) of
Circular Area of Radius, ¢
e B _j3*p o 2,..C _ 3R o
e Yr=0 167D [1+ua vl a(1+p) ©
a I_c“l 2 At Center
2 ’ 2
P=me’q i g _ 1-p)c
Moax = 4T [(1+“) log o+ 1 4a? ]
At Edge
Pa

4r (144
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Table B9-3. (Continued)

fFormulas For Dcflection And Moments

Case
Simply Supported, . P ( 1 1-p a?-n? P
Uniform Load On Concentric (w)r=b 87D (a*-b) {1 2 1l4p  al + o Tlog
Circular Ring Of Radius, b
P b
max(w) = ——|bllog= + (a%-b?) Lo
P=21bq r=0 8D a 2(1+u)
q b
+ log =~
— L . (p)p(any ) PLB 3
(== r=bh gma’ an
Fixed Edges, Uniform p (a‘ b sy b
Lead On Concentric (w)r=b 81D\ 2a? * 2 k’ga
Circular Ring Of Radius, b
2 (2.0 1a’-b’)]
p=27bq max(w) Hnl)[h gy * 73
q
P atpt
Mr—~:1 4r At

ke

Simply Supported,
Concentrated Load
At Center

j

£ I:m{nz—rz) + 2r!log i]

167D [ 1+4
{3+ pa?
¥ max 16r(1+) D

P 1]
Moo= () log T

Fixed Edges,
Concentrated Load At
Center

L

Clamped Edges,
Uniform Load Over
Concentric Circular

Area Of Radius, c

q

I

H

P=1rc2q

P a
= — + = + 1 -
M, g [(1 H) log = u]
= _P_rz r 2_.0
v 7D 1% 3 Tonp (271
w o Pa?
max 48w
|34 a
Mr = [(l+,u) tog © - 1]
Moo= = (1+p) 1 2
t 4t w8 H
' = 122 - 2 2— - 2
wmax(rd)) Py (43 4c” log . 3¢ )
At r=n
P ¢
Mr - 41r(1 T 2al Mt. - qu
At r=0
. LHCETDY S S
Mr Mt - AT log c T oa?
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Case Formulas For Deflcction And Moments
Supported By Uniform At r=0
Pressure Over Entire a2
Lower Surface, Uniform P . a » _3_+_g) ¢! 2(2:2& @l-ct)e
= = 2 = .
Load Over Concentric v 647D [4c log ¢t (1‘*# toa a I+ * a
Circular Area Of Radius, ¢
r a 1, f &
p=nclq M= M = 4r [(1*#) gy * 4;(1-“J (1 az)]
q
I_t 1 j If c==0
w = pa?  (+3p)y
64rD  (1+y) :
No Support, 2 a 2
. ‘ _ Mf*-r?) Ma
Uniform Edge Moment w 2D(1+p) WFO 2D(1+ )
'] M
( ) Kdge Rotation
_ Ma
D(1+p)
Edges Supported, At r=c
Central Couple
. m 2(a-c)
(Trunnion Loading) L [l + (1+p) log Ko ]
2
g_-.lul'—_g where
0.49 a?
h =
m K (c+0. 7a)?
Edpes Clamped, At r=c¢
Central Couple
. om 2{0.45 a-c)
(Trunnion Loading) M Py [1 + (1+4) log 0. 45 ka J
! ~ e f
where
0. 1 a?
- E = —
m k {e+0.28 )2
Edges Supported, At Point of Load: r?
Uniform Load Over Small P a-p o
= M = — - (-
Eccentric Circular Area Mr t 4m s (“‘u,) log A (-4 4(a-p)
Of Radius, r
° At Point q:
w = Ko(r'-pparf+e,a’) + K, (r*-bar'+e,a’r) cos ¢
+  Kyr'-bar’sc,a’r’) cosg
where
Ko = 2(1+u) P(p'-byap+cea’) K = ﬁ__
L G Krat ' 12(1-4%)
K, - 23D -hap™e.a? b = 3(2+4)
LOAD AT ¢ 1 3(9 +p) Krab ’ 0 2(1+y)
fq= "
fo=a, _ s +E]ZI"E‘—!haE"+clla222[ — 3(4+y)
K2 = (07 (o ) Krad ' Ty
_ 2054 _ Ay 6+ 6+u
bz e 'O 2em " S0 T 2w 0 Y 4da
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Table B9-3. (Concluded)

Case

Formulas For Deflection and Moments

Edges Fixed, Uniform

At Point of Load:

Load Over Small Eceentric _ P a-p r}
Circular Area of Radius, r, Mr Bt [(“#) log ry * {“"‘) 4ia-p$’ = max M when r0<0.6(a-p)
et e 3P (1) (a2-p?)?
| I” 2'510 = 4TEt%
At Point q:
3P(1-u? 1( pit r'
q - “(‘TEJ 1 P_,I_ ) U Br_
-i- 2rE¢ [2 a r‘) T8 o
! ! At Edge:
P ri _ M
Moo= - W = max M when ry > 0.6(a-p)
Supported At Several Supported At Two Points: (y, = 0, ¥, = =)
Points Along The Boundary
Load P at Center:
pa’
= 0.116 ——
Y=o 7, 1675
g _ Pa?
Wrza' 8= 1/2 = 0.118—0—
Uniformly Loaded Platc:
ore Gat
= 0.269 —
Yr=0 )
7]
_ ga
= 0.371 ==
wr= a, = /3 0.37 D
Supported At Three Points 120 Deg Apart:
Load P at Center
DPa?
= . -_
Wr:o 0. 0670 D
Uniformly Loaded
qa?
= o.17 L
wr=0 D
Edge Supported, Linearly ) _ qal+u) B
Distributed Load max Mr TR atr = 0.377a
Symmetrical About
Diameter _ qad(5+p (1+34) _
max Mt 720 +1) atr = 0.675a
q
W—@ max edge reaction per linear inch = j:- qa

4
max w = 0.042 f%; atr = 0.503a (u=0.3)
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£9.3.1.2 Anrular, Uniform-Thickness Plates

Solutions [or znnular circular plates with a central hole are tabulated in
Table B9-4.
B2.3.1.3 Solid, Nonuniform-Thickness Plates

For the plates treated herc, the thickness is a function of the radial dis=-
tance, and the acting load is symmetrical with respect to the center of the plate.

I. Linearly Varying Thickness:

The plate of this type is shown in Fig. B9-6.

/—"Cl
by 11&; IR

2

SN

AN RNR Y
l - |
-

AN
w
=2

o

N
VOO
T
-

(b}

FIGURE B9-6. CIRCULAR PLATE WITH LINEARLY VARYING THICKNESS
Tables B9-5 and. B9-6 give the deflection W ook and values of bending
moments of the plate in two cascs of loading. To calculate the bending moment
at the center in the case of a central load P, one may assume a uniform distri-
bution of that load over a small circular area of a radius ¢. The moment

M = Mt at r = 0 can be expressed in the form

r
2
- P_(..l._’f_ﬂ_l(logil. + é) + 4P : (28)

max 4T
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Table B9-4. Solutions For Annular, Uniform-Thickness Plates

Case

(5

TFormulas For Deflection And Moments

Uniform Load Over
Entire Actual Surface

P= q‘.‘rhz-bz)

AR

Quter Edge Supported,

At Inner Edge:

= = q a0 1 a2 22 a
max M Mt m[a(.l*-p)'* Y1 - p) - 42’ —~‘-1(1+.M)ahlogb
When b Is Very Small
qal
max M = Mt = T(.Hn)
maxw = L[5 te) b7+ a®h?(3 4 p) azbil*n)}
s 8(1+ ) a1+ 201+ p) 2(1 - p) b

2a2h;1+u! ( ay?
l()gﬁ

Outer Edge Clamped,
Uniform Load Over
Entire Actual Surface

P = qmla®-b2)

o,

Outer Fdge Supported,

At Outer Fdge:

q
'Ai — -

max r pr
I
maxw = Ean

[80° (1 4 1) -~ qaihi(s+u)

{af -1 -
M1 ~p) = i (1+p) log% + a’b?(14 y)

42 >
[d -2 al(1l-p) + B +u)

, a
%a‘ + 5B - Aaf? 4 Bb log o
)

. 2
o 4af2(1 + )] log —'-t- + leati(] +u)(log %)

Aath!

at (1 -p) + (L4 )

At Inner Edge:

- 214 ) 4 zh"&-&)}

(o) 4 B 4

Unitorm Leoad Along
Inner Edge

[3

—_—l

> ?
mix M = = ]Jrr [—':v!l—;w'&z !n!.,—l 1 (l-p)]
. ~ P S ) () 4a° I) 14 p ~‘
max W= s [ ) C Y T (l(n, )
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Table B9-4. (Continued)

Case

~
Formulas For Deflection And Moments

Outer Edge Clamped,
Uniform Load Along
Inner Edge

At Outer Edge:

2b? - 2b%(1 + p) log &

max M = L
r

a
- = i) - < .
w 1 ar(l-#) = b"r(1+p) max M when 5 2.4

At Inner Edge:

a¥(1 -p) - b1 4p) - 2(1 - uhal log %

max M, = Bu 1+
t  d4r pa‘(l-u) + bY(1+y)

- maxMwhen%>2.4

202 12 2.2 a %2 AN
26 (s - b7) - Salthlog & + 4ab(1+u)(logb)

af(1-p) + b'(1+p)

max w = a? . p? 4

167D

Supported Along
Concentric Circle
Near Outer Edge,
Uniform Load Along
Concentric Circle
Near Inner Edge

R

P

At Inner Edge:

_ P | 2a¥(1+p c c? . d?
maxM =M, = & [?Lbrl g o+ -W =

Inner Edge Supported,
Uniform Load Over
Entire Actual Surface

P = qnia-b?)

ovioillfin

At Inner Edge:

max M = M, = m}m[4ﬂ‘(l+#) log% + 4a%® + bY(1.p) - a‘(1+3u)]

At Outer Edge:

2
max w = '6'}5[“‘(7+3u) S bMG+ ) - albi(12+ 4y - 2R3 u)(1+u) log 2

(1.4}
16a'p?(1+p)2 aN?
f ' h’%h -uj("’g b) '

Outer Edge Fixed
And Supported,
Inner Edge Fixed,
Uniform Load Over
Entire Actual Surface

P = qrisb?)

AL

At Outer Edge:
max M_ = 3 |(a?. 3p) + -7—-741]‘ (log E)2
r 8 a‘ - b b
At Inner Edge:
M_= $a?+1?) - —,——T4a1bz (log a_)
r 8 (af - b%) b

2,2 2
e L gt . %2 _ 4’ log 2 o+ 62D a
max w 24D + 3b" - 4a‘b 4a°b logb + mlogb)
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Table B9-4. (Continued)

Case

Formulas For Deflection And Momdhts

"Quter Edge Fixed And

Supported, Inner Edge

Fixed, Uniform Load
Along Inner Edge

—

At Outer Edpge:

. 2h? a
My ™ an [1 T T b!(loﬁ' b]
At Inner Edge:
mo- Bl E (1o 2
max ¥y 4n EPITARL h)

>

; qalh? ay
2 2 =
mnl)[“ S (3]

max w =

Inner Fdge Fixed And
Supported, Uniform
Load Over Entire
Actual Surface

P = qmiaZ6?)

4B

At Inner Fdge:

(14 4) log % Sal{va )+ b op) 4 aal
a(14e) + V(1 -p)

. M BRI
max M 3
At Outer Fdge:

a Jaft7e )+ B o) o a1 7w) - uB(7 - 5

axw -
fmax 5aD L+ 3 BT -p)

. 2
4t fad(n —p) + BA(1+ )] log % + 16a'h(1+ u)(lng f—;)
a*(1+p) + (1 -u)

Inner Edge Fixed And
Supported, Uniform
Load Aleng Outer Edge

P

—

At Inner Edge:

P 20%( 1 + p) Ing% boa(1 o) - B1-g)
max Mr w 4_w “3(‘4“) P

At Outer Frlge:

p al(t+p) - Wy -p)
167D

- @1+ ) - ga’h? log %

s )+ (e}

max wo°

4
Aa?h(1 + u)(lng ﬁ)

AT 7 TR

Outer Edge Fixed,
Uniform Moment
Along Inner Edge

M M

>

At Inner Fdge:

0 a
I M Wl - b C o g o
b 20| WCH-p) D)

At Quter Edge:

ax M = M 2ht
maux r (l+u)l?_+ (1-#):12

inner Edge Fixed,
Uniform Momoent
Along Outer Fdgoe

L] M

—

At Inner Edge:

PRy
max M - M[“ e+ (1 -p)l)z}

At Outer Edge:

9 a
al _ al? salhd 1o 5
)

M
2| al(1+p) + b} -¥)

miax wo©
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Table B9-4. (Continued)

Case

Formulas For Deflection and Moments

Outer Edge Supported,

Unequal Uniform
Moments Along Edges

Mn Mb Mb Mn

(S (—)

r a“-b

2 2
Y - 1 a? _ 2 aMa-be . i‘_a
D(a* -b’) ) 2 1+p %8 T

= 1 2 2 azbz
M ﬁ[aMa-be-—rg-(Ma-Mb)

2.2
b(Ma-.Mb)
1-p

Outer Edge Supported,
Inner Edge Fixed,
Uniform Load Over

Entirc Actual Surfuce

P = qmtap?)

Hin}

At Inner Fdge:

4a™(1 + 1) log % - al(3+u) + a%i(5+p)

M = = _ b?
max e T B at(1+p) + b(1-p) b
max w = -g—%a‘ - 3b% + 2a%% _ ga’p? log%

64D

16(1 + ) alh? log2% + [4(7 + 3p)albt -

4(5+ 311 log %

a’(1+ ) + b(1-4)

_A(s4m)ath? - 2(3+p)ad - 2(5 4 u)a¥t
a?(1+p) + bi(1-p)

Both Edges Fixced,
Balanced Loading
{Piston)

P-qn(nz-bzl
(3
=, —
B

At Inner Edge:

al
< 4 P 9 B
max Mr S(a o lo;,b 3a b) ,
4,2 H
max w = 3-5{ - 4a'™® + b + ga’p? log:: ig'ﬂ)'! log a) }

Outer Edge Supported,
Inner Edge Free,
Uniform Load On

Concentric Circular
Ring of Radius, 1y

P

i't)i'o!

At Inner Edge:

~ P 1 a r2 caz+b2
max M, = E’"[z“'“) + (1+p) log " (1-#)527] - Ti;l'_—blj)

P az_h?. 34+ p 2 r2 32—b2 ] -
P (e -p)(3+4) - log = . J-(-ﬁ——)-(——ﬂ

max w = svrl)[ 21+ 4) (b +xf) ogb 2a%(1+4)
e | b + 2a%b? lo |

T 2D [(1+gr)  (af ~b)(1-4) 55
where

0

8%[(1-#) + 201+ p) 1og:—(; - (1-p) igz.]
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Table B9-4. (Concluded)

Case

Formulas ¥or Deflection and Moments

Outer Edge Fixed,
Inner Edge Frec,
Uniform Load Of

Concentric Circular
Ring Of Radius, ry

P

{ I’O ’n !

At Inncr Edge:
_ P a , 1} a1 -u) - hY(1+4)
max My = & [(““)(2 log =+ F - 1)] - c[uz(l-u) TR )
At Quter Edge:
p ré 2b?
Mr‘ B H_N(l " I‘g_) * ('[QT(I-‘.() + l)z(lﬁ-u)]

P of(at+ rd)at - b? 5. o n a ¢
— ———-9-1{1-———2 - + L= B
mrn[ 2a (b*+ rf) log 3 2D

[b‘ + 2ally? logf‘- - a2b2]
)

be(s Fp) + al(l-p)

Central Couple
Balancced By Lincarly
Distributed Pressure

At Inner Edgoe:

M
mix M = 3— where
r [{HY
U]Iug'“\
.::% & I 1.25 1. 50 2 3 4 b
q
q = 4M / mad B | 0. 1625 0.456 1.105 2,25 3,485 4.470
(p = 0.3)
Concoentrated Load At Inner Edge:
Applicd At Outer Edge
>
max M = [ 1- where
P r 6
O 1.50 2 3 1 5
b ’
f l 3.7 4.2% .2 G.7 7.9 H.8
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Deflections and Bending Moments of Clamped Circular
Plates Loaded Uniformly (Fig. B9-62) (1 = 0. 25)

M =pqa’ M, =g’
w = —gqa4 |
max Ehg r=0 =b r=a =0 r=b r=a

b

a o B B B B4 Py By
0.2 0. 008 0. 0122 0.0040| -0.161 ) 0.0122 0.0078 |} -0.040
0.4 0.042 0. 0332 0. 0007 ] ~0.156 | 0.0332 0.0157 | -0.039
0.6 0.094 0.0543 | -0.0188] -0.149 | 0.0543 0.0149 | -0.037
0.8 0. 148 0.0709 § -0.0591] -0.140 0.0709 0. 0009 | -0.035
1.0 0.176 0. 0781 | -0.125 -0.125 | 0.0781 | -0.031 -0.031

Table B9-6. Deflections and Bending Moments of Clamped Circular
Plates Under a Central Load (Fig. B9-6b) (u = 0.25)
M = M = =
r ot M =FP M, =AP
—a Pa?
max Eh{;J r=20 r=D>b r=a r=b r=a

b

a o Y1 B B Bi B
0.2 0. 031 -0.114 -0. 034 -0. 129 -0.028 ~0.032
0.4 0. 093 -0.051 -0.040 -0.112 -0.034 -0.028
0.6 0. 155 -0.021 -0.050 ~-0. 096 -0.044 -0. 024
0.8 0.203 -0.005 -0.063 -0. 084 -0. 057 -0.021
1.0 0. 224 0 -0. 080 ~0. 080 -0.020 -0. 020
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The last term is due to the nonuniformity of the thickness of the plate and the
coefficient vy, is given in Table B9-6.
Symmetrical deformation of plates such as those shown in Fig. B9-7 have

been investigated and some results are given in Tables B9-7, B9-8, and B9-9.

ol
ya S -

b

P

k=

///‘ _Lh
BEREEEEEEEEEEEE R
a P{‘ma2
i |

{c)
FIGURE B9-7. TAPERED CIRCULAR PLATE
.For bending moments under central load P> (Fig. B9-7b) the following equation

is true (v, is given in Table B9-8):

P - 2
M =Z;(l+p)log%+1—il7%)c— + y,P . (29)

max a
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Table B9-7. Deflections and Bending Moments of Simply Supported
Plates Under Uniform Load (Fig. B9-7a)(p = 0.25)
= 2 = 2
ot Mr Bga Mt piqa
h wmax=aEho r=20 r=2 r=0 r= = r=a
-ﬁﬂ 2 } ) -
1 o B B By By By
1. 00 0.738 0. 203 0.152 0.203 0.176 0.094
1.50 1.26 0.257 0. 176 0. 257 0.173 0. 054 -
2.33 2.04 0.304 0.195 0.304 0. 167 0. 029

Table B9-8. Deflections and Bending Moments of Simply Supported
Circular Plates Under Central Load (Fig. B9-7b)(p = 0.25)

pa? Mr = Mt Mr = BP Mt = 3P
%Q_ Wmax"am r =0 r=% r=—2— r=a
1 o Ya B By By
1. 00 0.582 0 0.069 0.129 0. 060
1.50 0.93 0. 029 0. 088 0.123 0. 033
2.33 1. 39 0.059 0.102 0.116 0.016
Table B9-9. Bending Moments of a Circular Plate With Central Load
And Uniformly Distributed Reacting Pressure (Fig. B9-7c) (g = 0.25)
Mr = Mt Mr = gP Mt = B,P
_lli_q r=20 r = % r = % r=a
! Yo B By By
1. 00 -0. 065 0. 021 -0. 073 0. 030
1.50 -0. 053 0. 032 0. 068 0.016
| 2.33 ~0.038 0.040 0. 063 0. 007
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Of practical interest is a combination of loadings shown in Figs. B9-7a
and b. For this case the v, to be used in equation (29) is given in Table B9-9.

II. Nonlinear Varying Thickness:

In many cases the variation of the plate thickness can be represented
with sufficient accuraey by the equation

.2
y = P8 (30)

in which 8 is a constant that must be chosen in each particular case so that it
approximates as closely as possible the actual proportions of the plate. The
variation of thickness along a diameter of a plate corresponding to various

values of the constant 8 is shown in Fig. B9-8.

'
@ b

AWN= O 4L 4

oD DT Y ™ ™

FIGURE B9-8. VARIATION OF PLATE THICKNESS FOR CIRCULAR PLATES
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Solutions for this type of variation for uniformly loaded plates with both
clamped edges and simply supported edges are given in Reference 1, pages
301-302. |
B9.3.1.4 Annular Plates with Linearly Varying Thickness

Consider the case of a circular plate with a concentric hole and a thick-

ness varying as shown in Fig. B9-9.

FIGURE B9-9. ANNULAR PLATE WITH LINEARLY VARYING THICKNESS
The plate carries a uniformly distributed surface load q and a line load

p = P/2rb uniformly distributed along the edge of the hole.
Table B9-10 gives fralues of coefficients k and ky, to be used in the fol-

lowing expressions for the numerically largest stress and the largest deflection

of the plate:

' qa P
( C'-r) max Y; or (0,) max h{
El.is_ . P_az
W oax = K1 Eby or W= K Fhy . (31)
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Table B9-10. Values of Coefficients in Equations (31) for Various Values

of the Ratio & (Fig. B9-9)( = 1)

.Z_l_
b
Coef- Boundary
Case ficicnt 1.25 L5 2 3 4 5 Conditions
a k 0.249 0.638 3. 96 13. 64 26. 0 20.6 P =rq(a® - b?)
] oo
f A ,
Ky 0. 00372 0. 0452 0.401 2,12 4.25 6.28 M =0
q k . 149 0, 991 2,23 5.57 7,78 416 P=0
=
[t 6
t 1
ky 0. 00551 0. 0564 0.412 1,673 2.79 3.57 M =0
a k 0. 1275 0,515 2,05 7.97 17,340 30. 0 p=mg(a® - b?)
(e -
b
t
ky 0. 00105 0.0115 0. 00 0. 547 1.261 2. 16 .70
p k 0. 159 0,196 1. 091 531 6.5% 1478 q=10
=0
S 9
ky 0. 04174 0.0112 0. DG 0. 261 0.546 | . 0.H76G $, =0
P k 0,353 LY R ¥ B 2.63 . 8K 11.47 16. 51 q=0
I — ;:: l =0
i r L
ky 0. 00814 0. 0583 0,345 16K 2.9 3.27 M, =0
a k 0, 0785 0. 208 0.52 1.27 1, 94 2.52 P=0
ey -
ky 0. 00092 0. 00K 0,0195 0. 193 0. 346 0.482 6, =0
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B9.3.1.5 Sector of a Circular Plate

The general solution developed for circular plates can also be adapted
for a plate in the form of a sector (Fig. B9-10), the straight edges of which are
simply supported. For a uniformly loaded plate simply supported along the
straight and circular edges the expressions for the deflections and bending
moments at a given point can be represented in each particular case by the fol-

lowing formulas:

q
a
w=a&D—, Mr=Bqa2, Mt=quaz’ . ‘ (32)

in which «, 8, and f; are numerical factors. Several values of these factors for
points taken on the axis of symmetry of a sector are given in Table B9-11.

The coefficients for the case of a

\ scctor clamped along the circular boun-

A ‘ 8 dary and simply supported along the

straight édges are given in Table B9-12.

FIGURE B9-10. SECTOR OF A It can be seen that in this case the maxi-
CIRCULAR PLATE
mum bending stress occurs at the mid-

point of the unsupported circular edge. The following equation is used for the
case when 7/k = /2

4
w = 0.0633 L&
max

The bending moment at the same point is

M, = 0.1331 qa’ '
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Table B9-11. Values of the Factors «, 3, and B, for Various Angles E
“of a Sector Simply Supported at the Boundary (¢ = 0. 3)

r_ 1 r .1 r . 3 LY
a4 a 2 a 4 a
T
k
o 8 i o ] By o B B4 a| B By
T 0. 00006 -0. 0015 0. 0093 0. 00033 0. 0069 0. 0183 0. 00049 0. 0161 0. 0169 0 0 0. 0025
4
z 0. 00019 -0. 0025 0.0177 0. 00080 0. 0149 0. 0255 0. 06092 0. 0243 0. 0213 0 0 0. 0044
3
T 0. 00092 0. 0036 0. 0319 0. 00225 0. 0353 . 0352 0. 00203 | 0.0381 0. 0286 [} 0 0.0088
2
bl 0. 00589 0. 0692 0. 0357 0. 00811 0. 0868 0. 0515 0. 00560 0. 0617 0. 0468 0 0 0.0221

Table B9-12.

of a Sector Clamped Along the Circular Boundary and Simply
Supported Along the Straight Edges (u = 0.3)

Values of the Cocfficients o and 8 lor Various Angles Eﬁ

r .1 r_ 1 r. 3 L

. 4 a 2 a 4 a
k

o B 4 B «o 61 o B
Zﬂ 0.00005 | -0.0008 | 0.00026 | 0.0087 | 0.00028 | 0.0107 | 0 | -0.025
L
3 0. 00017 | -0.0006 | 0.00057 | 0.0143 | 0.00047 | 0.0123 | O | -0.034
_27I 0. 00063 0.0068 | 0.00132 | 0.0272 | 0.00082 | 0.0113 | O | -0.0488
T | 0.00293 0.0472 | 0.00337 | 0.0446 | 0.00153 | 0.0016 | O | -0.0756
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In the general case of a plate having the form of a circular sector with radial
edges clamped or free, one must apply approximate methods. Another problem
which allows an exact solution is that of bending of a plate clamped along two cir-

cular arcs. Data regarding the clamped semicircular plate are given in Table

Bg"' 13.
Table B9-13. Values of the Factors , 8, and 3, for a
Semicircular Plate Clamped Along the Boundary (g = 0.3)
Z=0 |f=0.483] Z=0.486] £ =o0.525] T=1
Load a a a a a
Distribution .
A A max amax R imax B
Uniform Load q -0.0731 0. 0355 0. 00202 0.019%4 -0. 0584
Hydrostatic Load qi‘ ~0. 0276 - - - -0. 0355
I. Annular Sectored Plate: SIMPLY SUPPORTED
For a semicircular annular
sectored plate with outer edge sup-
ported and the other edges free, with FREE
if load th 4 tual FIGURE B9-11. ANNULAR
uniform load over the entire actua SECTORED PLATE

surface as shown in Fig. B9-11, the equations for maximum moment and deflec-

tion are:

At A

_ b 1 _ 28 ( - 29.) <
Mt = qcb(c 3)[01(1 Yy b) + ¢yl Y2"5)t % K ’
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At B
2.2
_ 24qcb7(b 1 o T n.,¢
w = ED P cy co;h—é- + ¢, cosh vy, > + b .
where

C = 1 C 1

1% 7 , ty
A Y2 . T b o\ 1 T
(C Yi )(l 1) cosh y, 5 (c ')/2)(>\ 1) cosh vy, 2

Y 4h? v 4kt
Y AN Y A N N AN A

h=c
K 1is a function of f)‘;—c(: and has the following values:

o
[
¢}

=1 0.05] 0.10] 0.2 | 0.3 | 0.4 0.5 0.6 0.7 1 0.8 0.9 1.0

g

K= 12.,33]2.20} 1.95| 1.75] 1.58 | 1.44| 1.32| 1.22| 1.13{ 1. 06| 1.0

B9. 3.2 Rectangular Plates

Solutions for many rectangular plate problems with various loadings and
boundary conditions are given in Tables 139-14 through 18. For loads and
boundary conditions not covered here, solutions can be found by applying the

various theoretical, approximate, or complete solutions discussed in
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Table B9-14.

Solutions for Rectangular Plates

2 b/a=a
b
‘ Pis load
All Edges Supported, At Center:
Uniforra Load Over
Entire Surface .\t:a = (0.0875 + 0.0637a . 0.05:30a )gh?

L

0. 125ght
M - _L.r s omy
N (1 +1.61e?) max M

0. 1422 !
max w (1+z.zm)ﬁ?

All Edges Supported,
Uniform Load Over Small
Coneentrie Clreular
Arca Of Rodius, r,

At Center:

Mb - Ir,:r- [(l-l-p) log ;T)o + (14 k)]

where
{.914
k= T* Lo - %8
/2
B 0, 20:Ph?
miax w *

12D(1 + 0.4620%)

All Edges Supported,
Uniform Load Over
Central Rectangular
Area Shown Shided

a,/b a =D
by/b 0 0.2 0.4 | o.a | 08| to
».
} 1 )

q ] 1. 42 1.8 | L. 12 | 0,931 0,76
\\ B 0.2 1.82 | 1.28 .08 { 0,80 | 0.76 | 0.63
% . 04 | ruod 07| osatorz|os2) 52
k 1 n.¢ 12} 0.90 | 0.72 | 0.60 § 0.52 | 0.43

0.8 loo9z| o |o6z|oens1]04z] o0
1.0 0.76 | 063 | .52 ] 0,42 | 0235 | 0030
. a,/b a = 1.4b

bi/b 0 02| 4 | 08| 1L2] 1.4
0 2.0 105 1.12 | 0.44 | .75
0.2 | L] tan| ves] oes | 074l 0osa
0.4 1.39 Lus| oo | g.60 { .62 ] 0.55
0.8 1.10 | .91 0.H2 | 0.68 | 0.53 | 0.47
0.8 |o.90] 0.7 | 0.68 | 0.57 ] 0.45 | 0,40
Lo | 075 | w6z | 0.57 | 0047 | 038 | o.an

a,/h a = 2b
by/h o | o] os|1.2] 1.6] 2.0
0 1. 64 120 | 0.97 | 0.78 | 0.64
0.2 L7y ] voi| o84 | 0.68 | 0.57
0.4 {niuz| o8| o.88] 0.74 | 0.60]| o.50
0.6 .04 | 0.90 | 0.76 [ 0.64 | 0.54 | 0.44
0.8 107 0.76| 0.63 [ 0.54 | 0.44 | 0.38
L0 | o.7t| 060 | 0.53] 0.45 | 0.38 | 0.30

At Center:

>
max o = o = B—:T wherefl is found in the following (p = 0.13):
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Table B9-14. (Continued)

All Edges Supported,
Distributed Load Varying
Lincarly Along Length

peaanll}

——]

Iyt
maxw = § Tq{' where 3 and § are found in the following:

B 0.16 0. 26

0.34 0. 38 0.43 .47 0.49

6| 0.022| 0,043 0.060| 0.070 | 0.078 | 0.086 ] 0.091
All Edges Supported, R U gt
Distributed Load Varying max ¢ = B T maxw o= o T where 8 and 8 arc found as follows:
Linearly Along Breadth
2
b ] 1.5 2.0 2.5 3.0 3.5 4.0

pe=atll

]

floe [ 0.2

0.:32 045 0. 37 0. 38 0. 38

[} 0. 022 0.012 0.0536 | 0,063 0671 0,069 D070
All Edges Fixed, At Centers of Long Fges:
Uniform Load Over
Entire Surface b
ntire Surface q max M

q

(REE

My = T 0oz

At Centers of Short Edges:

.. up?
M:l 24

At Center
M=
b H(1+ 4at) b

0. 0284
max w =

__D.028q
1+ 10567y 17

M= 0.0080h (1 + 20 - o)
i

b .
€ {formulas for Mb' k= 0.3; othersp = 0

One Long Edge Fixed,
Other Free, Short Idges
Supported, Uniform Louad

Over Eatire Surface

LR LLLLLLLLL L L LLLL,

At Center of Fixed Edge:

max M = M

At Center of Free Edge:

A
b 201+ 3. 207)

#qu’ L 37l
Em——e X W e
ss ss M, {1+ n.zﬂr,) TR T e
v
l FREE | B = oy
| a 1
One Long FEdge Clamped, . o yb? o
Other Three Edges Max Stress o = fi 2~ ' MAXW T

Supported, Uniform Lo
Over Entire Surface

WL LLLE L L L LLL L LALLL

s sS

s$

where [} amd & may he founc

I from the following:

b
b 1.0 1.5

2.0 2.5 $.0 3.7

A
-

-0

# | o.s0) 0.67

0.73 0.74 474 0.75 0.75

a | 0.00] 0.046

0. 054 0.4056 | 0,657 | 0.058 | 0,058

(n = 0.3)
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Table B9-14. (Continued)

e Short Edge Clamped,

(stncr Three Edges

Sugported, Uniform Load

Over Entire Surtace

he ovgb
Max Stress o = 3 2!3- , max w = —&r

where g and o may be found [rom the following:

8s a
4 b| 2o|l 1.5 ] 20 | 25 | 2o | z5 | 4.0
é s
b 58 g|oso] 0867 |0.73 |0.74 [0 |07 | 075
o 0.03] 0.071 | 0.101 ] 0.122 | 0,132 ] 0.137 | 0.139
(y = (). 3)
One Short Erge Free, Bah* agh!
Other Throe Fdges max e = = ! maxw o= T
Supported, Unilorm Load
Over Entire Surface where # and ¢ are found from the following:
s$ 2
b 1.0 1.5 2.0 4.0
“REE s
- ] 0.67 0.77 0,79 0. 80
u. 0.14 0. 16 0. 165 . 167
(r = 0.3)
One Short Edge Free, Agbt vght
Other Three Edges maxe = ' mAXW =
Supported, Distributoed
Toad Varying Linearly where fi and o are found {rom the following:
ng
Along Length
a
FREE q b .0 L& 2.0 2.5 30 3.5 4.0
EDGE L R
I_—".—_" gloz2 0,28} 0.32 0.5 0.6 0.37 0.7
@ 0.04] 0,05} 0,058} 0.064 ) 0.067 | 0.069 | 0.070
(v = 0.3)
One Long Edge Frec, _ jobt _ ught
Other Three kxges maxg = & ' maxw = oo

Supported, Uniform Load

Over Entire Surface

q
(3 (L
b

where 3 and a are found from the following:

FREE e
EDGE A

One Long Fdge Free,

Other Threc Edges

Supported, Distributed
Load Varying Linearly

Along Length

_ﬂ_ .
b 1.0 .5 2.0
8 0.67 0.45 0.6
o 0. 14 0. 106 0. 080
u = 0.3)
max o = 'B%bl » max w s -afq?h_g‘-

where 7 and a are found from the following:

2

b L0 1.5 2.0
B 0.2 0. 16 0.11
a 0. 04 0. 033 0,028

(v = 0.3)
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All Edges Fixed, Uniform
Load Over Small
Concentric Circular
Area Of Radius, ry

Liglrsr s

T

®

e T e S N, T S
et

TTTrTITTIT

b

At Center:

p b
Mb = Z;El+f-¢) log;;; + 5(1-a

where 3 has values as follows:

oI

B8 . 072

0. 0816 0. 0624

z|= max M R w=B£b—2

12

Long Edges Tixed, Short
Edges Supported,
Uniform Load Over

At Centers of Long Edges:

2

- = qb
. : = ey rerararer £y
Entire Surface max M = M, 12k + 0.20")
9 At Center:
J; ;@ 2 201 4 0. 2oy
I b M = gb . M :qbsl O.Jar!
b 24(1+ 0.8c") a 50
(u=0)
Short Edges Iixed, At Centers of Short Edges:
Long Edges Supported,
Uniform Load Over qha
e a = = e
Entire Surface max M Ma 4(1+ 0.8a")
9 At Center:
i a __! M = gb? M o= 015gqb%(1 + 3a°
b g(1 + 0. 8c" + Ga®) ! a 1+ af)
(p=0)
All Fdges Supported, B 2 _ agb!
Distributed Load in Form max M = fiqb ’ max w D
of Triangular Prism
B and ¢ found from the following:
q
2
b 1.0 1.5 2.0 3.0 @
f——t I 0. 034 0. 0548 0. 0707 0. 0922 0. 1250
2] 0. 00263 0. 00368 0. 00686 0. 0086H 0. 01302

(u= 0.3)
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Table B9-14. (Continued)
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Table B9-15.

Coefficients For Maximum Moments For Various Loads,
Plate With Three Sides Fixed, One Free (u = 0. 2)

»

|
I

2 FREE

- |
1

TASRRRNNSNS
o

I

LO q /\M P
ad q
b b b b
213b | g 2/3b
N , | :[bla . A L . ,Ibls . ,‘:u "
1/4 0.0052 qb? | 0.0051 gb® | 0.0044 gb? | 0.0038 gb?® | 0.0032 gb® | 0.0017 gb® | 0.0004 gb® | 1.000 M 0. 0471 Pb
1/2 0.0209 gb? | 0.0184 gb® | 0.0105 gb® | 0.0114 gb? | 0.0084 qb? | 0.0040 gb® | 0.0009 qb? | 1.000 M 0. 1522 Pb
3/4 0.0476 qb® | 0.0330 qb? | 0.0140 gb® | 0.0208 qb? | 0.0131gb? | 0.0051 qb® | 0.0013 gb® | 1.1461 M | 0.2723 Pb
1 0.0852 gb? | 0.0433 gb® | 0.0131 gb* | 0.0277 qb® | 0.0165 gb? | 0.0050 gb*® | 0.0012 gb® | 1.3643 M | 0.3938 Pb
3/2 0.1788 gb? | 0.0617 qb? | 0.0140 gb? | 0.0433 qb® | 0.0190 qb? | 0.0042 qb® | 0.0010 gb? | 1.6292 M | 0.6266 Pb
2 0.2613 gqb® | 0.0757 qb® | 0.0136 gb® | 0. 0644 qb® | 0.0208 gb® | 0.0039 gb® | 0.0008 qb? | 1.7779 M | 0.8094 Pb
3 0.3304 qb® | 0.1036 qb® | 0.0146 qb® | 0.0857 gb* | 0.0270 gb® | 0.0038 qb? | 0.0006 qb? | 1.7980 M | 0.9388 Pb

¢p a9ed
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69 uorjoeg



Table B9-16.

Coefficients For Maximum Moments For Various Loads,
Plate With Three Sides Fixed, One Hinged (p = 0. 2)

1 a 1
I 1
HINGED »} T
7
'; b
4
2
™M
L 1 m
ad q
b b b
a 2/3b q 2/3b
/ b _I / b/ 4
b/3 ‘[ 3 P
4 ¢ ’ q ™ q qQ " a ¥
1/4 | 0.0052 qb? 0.0051 gb? 0.0044 qb? 0. 0038 gb? 0.0032 qb? 0.0017 qb? 0.0014 gb? 1.00 M
1/2 | 0.0201 q¥? 0.0185 gb* 0.0105 gb? 0.0114 gb? 0.0084 gb? 0.0040 qb? 0.0025 gb? 1.00 M
3/4 | 0.0403 qb? 0.0329 gb? 0.0132 gqb? 0.0207 gb? 0.0131 qb? 0.0051 qb? 0. 0027 gb? 1.00 M
1 0.0572gb? | 0.0425qb? | 0.0131qb? | 0.0269 qb® | 0.0163 qb* | 0.0050 qb* | 0.0032qH? | 1.00 M
3/2 | 0.0695 qb? 0.0472 qb? 0.0132 qb? 0.0302 gb? 0.0176 qb’ 0.0041 gb? 0. 0036 gb? 1.00 M
2 0.0664 qb* | 0.0451 gb’ 0.0120 gb? 0. 0289 gb? 0.0161 qb* | 0.0035 gb? 0. 0038 gqb? 1.00 M
3 | -0.0704 qb® | -0.0477 qb* | -0.0111 qb?® | -0.0297 qb?® | -0.0154 gb?* | -0.0029 qb? | 0.0039 gb? 1.00 M

¥¥ o8ed

1261 Joquoldes GT
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Table B9-17.

Coefficients For Maximum Moments For Various Loads, Plate Fixed Along One Edge,
Free On Opposite Edge And Hinged On Other Two Edges (u = 0.2)

{ |
FREE ]
ss sS b
I TNy e
M P
L 9 n
0
24 9
b b b b
23b | q 2/3b
b/3 —[b/3
3y ” , ,_I , , , b6
b ] q q q
1/4 -0.0080 gb® | 0.0073 gb® | 0.0066 gb? | 0.0061 gb? | 0.0055 qb? | 0.0038 qb? | 0.0020 gb® 1.0 M -0.0534 Pb
1/2 | -0.0317 gb? | 0.0269 qb® | 0.0177 qb® | 0.0199 gb? | 0.0156 gb® | 0.0080 qb? | 0.0030 gb? 1.0 M -0. 1300 Pb
3/4 -0.0644 gb? | 0.0497 qb® | 0.0250 qb? | 0.0353 gb® | 0.0243 gb? | 0.0101 gb® | 0.0032 qb? 1.0M -0.2007 Pb
1 0.1108 gb® | 0. 0757 gb® | 0.0317 qb® | 0.0535 gb® | 0.0333 gb® | 0.0122 qb? | 0.0036 gb? 1.0 M ~0.2590 Pb
3/2 0.2136 yb? | 0.1216 qb® | 0.0406 gb® | 0.0871 gb® | 0.0471 qb? | 0.0147 gb® | 0.0040 qb’ 1.0 M -0.3114 Pb
2 0.3007 qb® | 0.1552 gb? | 0.0461gb® | 0.1128 qb® | 0.0565 qb? | 0.0161 qb? | 0.0043 gb® 1.0 M 0.4831 Pb
3 0.4084 qb? | 0.1929 gb? | 0.0516 gb® | 0. 1426 gb® | 0.0666 qb? | 0.0175 qb® | 0. 0045 gb? 1.0M 0.7513 Pb

Gy 93ed
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Table B9-18.

Coefficients For Maximum Moments For Various Loads,

Plate Fixed On Two Adjacent Sides, Free On Other Sides (u = 0. 2)

FREE

FREE b

q -
L 1
Oa - q
d
- . .
a — 2/3b q 2/3b
/ 1 -‘[ /3 ]}:/3 K
b b .
— 1 4 s q ™ q 7 q " q4 ;Tbls
1/8 0. 0083 gb® | 0.0083 qb? | 0.0057 gb® | 0.0072 qb? | 0.0066 gb® | 0.0041 qb? | 0.0027 gb?
1/4 0.0313 g»% | 0.0289 qb® | 0.0165 gb® | 0.0221 qb® | 0.0181qb® | 0.0087 gb® | 0.0036 gb?
3/8 0.0664 qb® | 0.0495 qb® | 0.0238 gb* | 0.0354 qb® | 0.0257 qb® | 0.0118 gb® | 0.0038 gb?
1/2 0.1074 qb® | 0.0775 qb* | 0.0310 qb® | 0.0546 qb® | 0.0358 gb? | 0.0140 gb® | 0.0043 gb®
3/4 0.2076 qb* | 0.1262 qb? | 0.0402 qb® | 0.0896 qb? | 0.0507 gb® | 0.0167 qb® | 0. 0048 gb?
1 0.2949 qb? | 0.1605 qb® | 0.0456 qb> | 0.1157 gb* | 0.0603 gb* | 0.0181 gb® | 0.0050 gb?

oF o3eq
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B9.3.3 Elliptical Plates

For plates whose boundary is the shape of an ellipse, solutions have
been found for some common loadings. Table B9-19 presents the available
solutions for elliptical plates. For additional information as to method of solu-
tion to the plate differential equations seé Reference 1.

B9.3.4 Triangular Plates

Solutions for several loadings on triangular shaped plates are presented
in Table B9-20.
B9.3.5 Skew ﬂ%t_(ﬁ

Solutions have been obtained for skew plates in References 1 and 5. The

significant results from these references are presented in Table B9-21.
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Solutions For Elliptical, Solid Plates

b b/a=a

Edge Supported,
Uniform Load Over
Entire Surface

Edge Supported,
Uniform Load Over
Small Concentric
Circular Area
of Radius, r,

At Center:
- - 2
max stress = o = 0 3125(5‘, @)qb
_ (0.146 - 0.1a)gb? 21
maxw = = (for u -3)
At Center:

P b
max M = Mb = [(1+u) log 2r; + 6.57 - 2.57au]

Pb? 1
maxw = ﬁ,-(o.ls - 0.045¢) @ = 4—)

Fdge Fixed, Uniform
Load Over Entire
Surface

Edge Fixed, Uniform
Load Over Small
Concentric Circular
Area of Radius, r,

At Edge:
gb%e? b2
= - =
Ma 4(3 + 207 + 3a7) i Mb - a3+ 207 + 301')
At Center:
M = _abie’+u b1 + o
a 8(3 + 2a° + 3a ! 8(3 + 2¢° + 3o
maxw = o
64D(6 + 42 + 6a’)
At Center:
_ P(1+y) b
Mb = ar (103 To - 0.317a¢ - 0. 376)
2
mex w = Pb*(0. 0815 - 0. 026c) (2 = 0.25)

Et’
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_ Table B9-20. Solutions For Triangular Plates

x
2/3a
0 y
a/3
Equilateral Triangle, g’ , .
it = 0. 1448 = = 0. 062: = .t
Edges Supported, max Ux T aty =0, x ). 062a (1 =0.3)
Distributed Load Gver
. a2
3 Cily ace [$H
Entire Surface max o - 0. 1554 —'t-i- aty =0, x=0.120a (= 0.39)

4
qn . .
mix w = al point
wazp oo

il

Edges Supported, Load 1P
Concentrated At 0
On Small Circular Area
Of Radius, r,

3(1+ WP 0. 378a
max o« Log
A 2t T 6 0 - 0.5t
Pt (1 - p?
max wo= 0. 06R52 —lqu)- at point ¢

(B8

0.379 +

(1 -p)
21+ )

Right-Angle Isosceles
Triangle, Fdges Supported,
Distributed Load Over
Fntire Surface

Equilateral Triangle
With Two Or Three Edges
Clamped, Uniform Or
Hydrostatic Load

2a

3
x

k3 n
. a” e U
mix r:rx = 0,111 _tT . mitx ﬂ\' T 0. 1125 —l-r
« lll
max w = 0.0095 ]Lly (g - 0.3
M = Bl or M o= fga? where
LEdge v = 0 Supported Fdgge y - 0 Clamped
Lowd
Distribution M M M M M hif I M M
*1 Vi e ¥y Al ¥ Ny Y3
Uniform 0.0126 1 0. 0147 | -0. 0245 [ 0.0113 100110 ~0. 0238 | ~0. 02148
Hydrostatic /3y | 0, 00537 0. 0035 | -0. 0100 O f nous b fo oot 1o, 0001 | -0, 0060
(w = 0.2)
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Table B9-21. Solutions for Skew Plates
All Edges Supported, fabt
Distributed Load Over max g = ab T ST where g is
Entire Surface
as 28 a ¢ deg 10 deg 45 deg 60 deg 75 deg
e
i) 0.501 0.50 0.45 0.40 0.16
|?§ ; I” (u=0.2)
Edges b Supported, Fdges fab’ s
a Free, Uniform ‘TE % " It where 1 is
Distributed Load Over
Entire Surface n 0 deg 30 deg 45 deg 60 deg
L g | o.782 0.615 0.437 0. 250
|
6) b
2 faat
All Fdges Clamped, At Center: M = fga W o
Uniform Distributed
Load Over Entirc Surface where 8 and g, are
a = E‘. = 5 E = E- =
Skew B 1 Py 1.25 b 1.5 P 2,0
5 Angle 9
1 (deg) a [N 8 B 8 By B By
I—-—————-' 15 0.024 0.001123 ) 0,019 0. 00066 0.015 0. 00038 0. 6097 0. 00014
. 30 0.020 0. 00077 0.018 0. 00045 0.0125 0. 00026 0. 0075 0. 00009
* 45 0.015 0. 060038 n.011 0. 00022 0.014 0. 00012 . 005 0. 00004
60 0. 0085 | 0.00011 0. 0062 | 0.00008 0. 048 0. 00003 0.0025 0. 060001
75 0.0025 | 0.000009 | 0.0027 [ 0.000005 | 0. 00125 § 0.000002 | 0.00125
Along Fixod Edge:
The cocfficient 3, for maximum bending moment along the
cdge at a distance fa from the acute corner is
- 2 a_
(M = ayqu* for 5= 1)
Skew Angle
(deg) B f
15 -0. 0475 0.8
30 -0, 0400 0.69
45 -0, 0299 0, 80




