SECTION B8.4
TORSION OF THIN-WALLED OPEN SECTIONS
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B8.4.0 TORSION OF THIN-WALLED OPEN SECTIONS

An open section is a section in which the centerline of the wall does
not form a closed curve. Channels, angles, I-beams, and wide-flange
sections are among many common structural shapes characterized by com-
binations of thin-walled rectangular elements; a variety of thin-walled curved
sections is used in aircraft and missile structures. The basic characteristic
of these sections is that the thickness of the component element is small in
comparison with the other dimensions.

The torsional analysis of thin-walled open sections for both unrestrained
and restrained torsion is included in this section. Torsional shear stress,
angle of twist, and warping deformations are determined for unrestrained
torsion. Torsional shear stress, warping shear stress, warping normal
stress, angle of twist, and the first, second, and third derivatives of angle

of twist are determined for restrained torsion.
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B8.4.1 GENERAL

The stresses and deformations determined by the equations in this
section can be superimposed with bending and axial load stress and deformations
if the limitations of Section BS8. 4. 1-II are not exceeded and proper consideration

of stress and deformation sign convention is taken into account.
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'B8.4.1 GENERAL
I. BASIC THEORY

If a member of open cross section is twisted by couples applied at the
ends in the plane perpendicular to the axis of the bar and the ends are free to

warp, we have the case of unrestrained torsion (Fig. B8.4.1-1).

-

A. Rotated Section B. Warped Section

Figure B8.4.1-1. Warping

However, if cross sections are not free to warp or if the torque varies
along the length of the bar, warping varies along the bar and torsion is
accompanied by tension or compression of longitudinal fibers. Also, the rate
of change of the angle of twist along the bar's longitudinal axis varies. This
case is called restrained torsion.

These two types of torsion will be discussed separately in the following
sections,

A. Unrestrained Torsion

The twisting moment on thin-walled open sections is resisted only by

the torsional shear stress for unrestrained torsion. However, the manner in
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which a thin-walled open section carries a torsional moment differs from the

manner in which the thin-walled closed section carries a torsional moment. This
difference can be seen by comparison of Figures B8.2.1-1A, BS8. 2, 2-2A,

and B8,3.1-1A to Figure 8.4.1-2. The thin-walled closed section carries the
load by a shear flow that goes around the section, while the open section carries
the load by a shear flow which goes around the perimeter of the section. From
Figure B8.4.1-2, it can be seen that the shear stress distribution across the
thickness of the section is linear and that the maximum stress on one edge is

equal to the negative of the maximum stress on the other edge. (Ref., 1).

h]

e

Figure B8.4.1-2. Pure Torsion Shear Stress Distribution
The torsional analysis of thin-walled open sections for unrestrained
torsion will require that the torsional shear stress (1 t) be determined at any
point (P) on the section. Because of the definition of unrestrained torsion,
the torsional shear stress at any point on the section will remain constant

throughout the length of the member.
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The angle of twist of the cross section (¢) should also be determined,
plus the warping deformation (w) at any point (P) on the cross section.

As was the case for solid sections and thin-walled closed sections, two
unique coefficients exist that characterize the geometry of each cross section.
These coefficients are called the torsional constant (K) and the torsional
modulus (St) and are functions of the dimensions of the cross section. These
coefficients are discussed in detail below (Section B8. 4. 1-IV).

B. Restrained Torsion

When a member with a thin-walled open cross section is restrained
against warping a complex distribution of longitudinal stresses is developed
that cannot be evaluated using elementary theories. The assumption that
plane sections remain plane during deformation is no longer valid, and
applications of Saint-Venant's principle may lead to serious errors. In thin-
walled open sections, stresses produced by restrained warping diminish very
slowly from their points of application and may constitute the primary stress
system developed in the member,

Obviously, if one section is restrained in such a way that it cannot
warp, a system of normal stresses must be developed to eliminate this
warping. In general, these normal stresses vary from point to point along
the member and, hence, they are accompanied by a nonuniform shearing stress
distribution. This, in turn, alters the wist of the section. As a result, the
twisting moment developed on each section is no longer proportional to the
rate of twist, and final shearing stresses cannot be obtained by those that were

produced by unrestrained torsion.
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Therefore, three types of stresses must be evaluated for the case of
restrained torsion. These are: (1) pure torsional shear stress, (2) warping
shear stress, and (3) warping normal stress. These st‘réss distributions
are shown for several common sections in Figures B8.4.1-3, B8.4.1-4, and
B8. 4.1-5. It will be required to evaluate these stresses at any point (P)
on the cross section and at any arbitrary distance (Lx) from the origin. Also,
the angle of twist (¢) should be determined between an arbitrary cross section
and the origin along with the warping deformation (w) at any point (P) on an
arbitrary cross section. (Ref. 2).

It was shown previously that two coefficients were necessary to
characterize the geometry of the cross section for unrestrained torsion. These
were the torsional constant (K) and the torsional section modulus (St) . For
restrained torsion, three additional coefficients are required to characterize
fully the geometry of the cross section and the point where the stresses are to
be determined. These coefficients are called the warping constant (I') —

a function of the dimensions of the cross section, the normalized warping
function (Wn) , and warping statical moment (SW) . The latter two are
functions of both the dimensions of the cross section and a specific point on
the cross section. These coefficients are discussed in detail in Section

BS8.4.1-1V,
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B8.4.1 GENERAL
II, LIMITATIONS

The torsional analysis of thin-walled open sections is subject to the

following limitations:
A. Homogeneous and isotropic material
Thin-walled cross section not necessarily of constant thickness

B
C. No abrupt variations in thickness except at reentrant corners
D. No buckling

E

Inexact calculations of stresses at points of constraint and at abrupt
changes of applied twisting moment
F. Applied twisting moment cannot be impact load
G. No abrupt changes can occur in cross section
H. Shear stress is within shearing proportional limit and proportional
to the shear strain (elastic analysis).

I. Points of constraint are fully fixed, and no partial fixity is allowed.
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BS.4.1 GENERAL
III. MEMBRANE ANALOGY

In the case of a narrow rectangular cross section, the membrane

analogy gives a very simple solution to the torsional problem. Neglecting the
effect of the short sides of the rectangle and assuming that the surface of the
slightly deflected membrane is cylindrical ( Figure B8.4.1-6), the deflection

is

and the maximum slope is -g—,ti.- . The volume bounded by the deflected

membrane and the }(y plane is (Ref. 3):

>
- = en e w=—

' Ll H

B TR TR

Figure B8.4.1-6. Membrane Analogy for Torsion of Thin Rectangular Section
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Now using membrane analogy and substituting 2Gf for p/T in the previous

equations, the twisting moment (Mt) is given by

I
Mt—sbt Go

or

M
0 = Mt/1/3bt3G=§—é—t-
t

and the maximum shearing stress is

M M
Trna:vc=tG9= 1 t =St
— bt? t

3

where
8, = 1/3bt? .

The equations for Mt

and T nax’ obtained for a thin rectangle can also be

used for cross sections, such as those shown in Figure BS8.4.1-2, by simply

adding the expression 1/ 3bt? for each element of the section (neglecting a

small error at corners or points of intersection of the elements). In the

general case of a section with N elements:

n
— ' 3
K=1/3 izli bt} .
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The maximum shearing stress on any element i is given by

(1 ) = Mt (ti)max
max’ , S
i t

The maximum stress on the entire section is given by

M t
_ t max
max St

T
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B8.4.1 GENERAL
IV, TORSIONAL COEFFICIENTS

In the development of the formulas for the torsional analysis of open
cross sections, it is convenient to designate certain terms as torsional
coefficients for the cross section. The terms K and I' are properties of the
entire cross section, while the terms St’ Sw’ and Wn apply to specific points

on the cross section.

A. Torsional Constant (K)

The torsional coefficient (K) is called the torsional constant, and
its value depends upon the geometry of the cross section.

Torsional constants for thin-walled open sections are based on formulas
for the thin rectangle.

Section B8. 2. 2-III contains an expression for the torsional constant
for a general rectangular section. Since we are concerned with a thin-walled
section, it can be seen that when the length-to-thickness ratio is approximately

ten, the value of the torsion constant is

K = 1/3bt% .

This value is also verified by the membrane analogy in Section BS. 4, 1-1I1.

The torsional constant for curved elements is the same as that for a rectangle

with b denoting the length of the curved element, as shown in Figure B8.4.1-2.
Therefore, for a section composed of many thin rectangular, or thin

curved elements, the torsional constant can be evaluated by the following

expression:
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If a section has any element with a length-to-thickness ratio less than ten, the
value of K for that element should be determined by the equations in Section
B8. 2. 2-I11. ‘

More accurate torsional constant expressions are determined for some
standard sections by considering the junctions of the rectangles and rounded
fillets at the junctions. .

Some K values for frequently used sections are (Ref. 2):

1. For I sections with uniform flanges ( Fig. B8.4.1-7A):

K= z/3bt; + 1/3(d-2t) t3w+ 2a D} - 0. 42016t;

where

a=0.094 + 0.07‘13‘
t
f
' t
(tf+ R)2+tw (R+—‘£—)

D= 4

2R +
b

2. For I sections with sloping flanges (Fig. B8.4.1-7B):

b-t
= W 2 3 - 3
K=—a= (t.+ a)(t§+ a%) +2/3 ta’+ 1/3(d 2a)t

+2aD‘-Etﬁ‘f



where

t
(F+c)2+t (R+-—w—)
w

4
b= F+R+c

and for 5-percent flange slope

t

@ =0.066 + 0021 = + 0,072 &
a a
E =0.44104
t
_R _vy_)
=20 (19. 0250 - °R
and for 2-percent flange slope
tw R
a =0.084 + 0.007-—;— + 0.071 i’y

E =0.42828

t
_R __w_)
F-—50 (49.01-2R

3. For channels with sloping flanges (Fig. B8.4.1-7C):

- 34,00 2, .2
.K—1/3twd+ s (a+t) (a +tf).
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4. For Tee section (Fig. BS8.4. 1-7D):

btg ht?
K=+ +o Dt

where
a =0,.094+0.07 R/l:f

t
(t+R)%+t (R+-l)
w

4
2R + tf

D=

9. Angle section (Fig. B8.4.1-7E):

K =1/3bt} + 1/3 dt} + o D*

where
a=—:12-(0.07+0.076—1;—) St
(kg + R)%+ g (R+—tz-)
D<= VA

2R+t1

6. Zee section and channel section with uniform flanges (Fig.
B8.4.1-7F).
K values for these sections can be calculated by summing the K's of

the constituent angle sections computed in case 5.
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It should be noted that the K formulas for these frequently used
sections are based on membrane analogy and on reasonably close approxima-
tions giving results that are rarely as much as 10 percent in error.

B. Torsional Modulus (St)

The torsional coefficient (St) is called the torsional modulus. Its
value for any point on the section depends upon the geometry of the cross
section.

The basic equation for determining the torsional modulus at an

arbitrary point (s) on a cross section is:

K-
t(s)

St(s) =

where K is as defined in Section B8.4.1-IVA and t(s) is the thickness of the
section at point (s).
Because the torsional modulus is necessary for the calculation of the

torsional shear stress in the equation

o MO
- 8,(x,5)

it is often required to find the minimum value of S t(s) in order to make Tt
a maximum,

Therefore:

5 —
St(mm) =7
max

where tmax is the maximum thickness in the cross section.
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C. Normalized Warping Function (Wn)

The torsional coefficient (Wn) is called the normalized warping
function. Its value depends upon the geometry of the cross section and upon

specific points on the cross section.
For the generalized section shown in Figure B8.4.1-8, the following

equation is used for calculating Wn( 8) at any point (s) on the section:
w 1 b W td
n's) =7 J os " Yos

where

Wos =6" P, ds.

Some Wn values for frequently used sections include:

1. For symmetrical wide flange and I-shapes (Fig. B8.4.1-9A):

W =
no

o
g

2. For channel sections (Fig. B8.4.1-9B):

__uh
Wno_2

Eh
w_=-2

n2 2



P Perpendiculor distance to tangent line from centroid Section B8. 4
P, Perpendicular distance to tongent line from shear center 28 June 1968
cg Centroid of cross section P 19

sc Shear center of cross section age
t,y Coordinates referred to the principal centroidal axes

¢ Angle of twist

[Al! directions are shown positive. p andp, are positive if they

are on the left side of an observer at P (z,y) facing the posi.

tive direction of s.] tengent line

/ g \ Py
P

13 /l <q
/ ~
/ !
4/\:/ /
¢ !

bay) /)

o (s,y)

Figure B8.4.1-8. General Thin-Walled Open Cross Section

where
E - B)%t
o 2b't+ht /3
w
and
u=b'-E

3. For zee sections (Fig. B8.4.1-9C):
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A. Symmetrical H-and I-Sections
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. .
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wno
R\ Y s, N Suyg
n2 \ | -

B. Channel Sections

LA Jah

LIPY Sw2 :Dswo
‘ sw?
C. Zee Sections

Figure B8.4.1-9. Distribution of Wn and Sw for Standard Sections
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where
u=b'-u'
L L
h, + 2b't
tw

In the foregoing expressions:
h = distance between centerlines of flanges, in.
b = flange width, in.
b' = distance between toe of flange and centerline of web, in.
t = average thickness of flange, in.
tw = thickness of web, in.

D, Warping Statical Moments (Sw)

The torsional coefficient (Sw) is called the warping statical moment.
Its value depends upon the geometry of the cross section and upon specific
points on the cross section.

For the generalized section shown in Figure B8. 4. 1-8, the following

equation is used for calculating Sw(s) at any point (s) onthe section:
s
8 (s) =J‘ W_(s)tds.

The value of Wn(s) is determined from the previous subsection (B8.4.1-IVC).

Some Sw values for frequently used sections include:
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1. For symmetrical wide flange and I-shapes ( Figure B8.4.1-9A):

hb?t

S ==

wi 16

2. For channel sections (Figure B8.4.1-9B):

_ u’ht

wi 4

(b' - 2E )hb't
S = o
w2 4

(b' - 2E )hb't E h%
g = o' __o w
w3 4 8

3. For zee sections (Fig. B8.4.1-9C):

(ht + b't)2 h(b") %
Swt = 4(ht_+ 2b't) 2

h%t (b')2t
g o w_
w2 4(ht_ +2b't)

where u, h, t, b, b', Eo’ and tw are defined in the previous section.

E. Warping Constant (T)

The torsional coefficient (I') is called the warping constant. Its
value depends only on the geometry of the cross section. For the generalized
section shown in Figure B8. 4. 1-8, the following equation is used for cal-

culating T
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b
L 2
r={ W (s)tids .
0
The value of Wn(s) is determined from Section B8.4.1-IVC. Some values for

frequently used sections are:
1. For symmetrical wide flange and I-shapes (Fig. B8.4.1-9A):

2
_hWt i
24 4

r

2. For channel sections (Fig. B8.4.1-9B):
= t 2 t 2

r 1/6(b3EO)h(b) t+ Folx.

3. For zee sections:

1
_ (b')athz b't + thw
12 nt + 2b't
w

r

where h, b, t, tw’ b', and E0 are defined in Section B8.4.1-1IVC, Ix = the
moment of inertia of the entire section about the xx axis, and Iy = the moment

of inertia of the entire section about the yy axis.
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B8.4.2 UNRESTRAINED TORSION

The formulas given in this section apply only to members of open
cross section twisted by couples applied at the ends in the plane perpendicular
to the longitudinal axis of the bar, and the ends are free to warp as shown in

Figure B8. 4.1-1.
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B8.4.2 UNRESTRAINED TORSION
I. ANGLE OF TWIST

For the case of unrestrained torsion, the torsional moment resisted

by the cross section is
M, = GK ¢'

where
M, = resisting moment of unrestrained cross section, in. -lb
= Mt
G = shear modulus of elasticity, psi

K = torsional constant for the cross section, in. ¢
o' = -g% = angle of twist per unit of length.

This is the first derivative of the angle of rotation ¢ with respect to
X, the distance measured along the length of the member from the left
(Fig. BB8.4.2-1).

Therefore, the basic equation for determining the angle of twist
between the qrigin and an arbitrary cross section at a distance Lx from the
origin is:

x M(x)
K(x)

1) = dx

)
where K(x) is the torsion constant at Lx. If the cross section does not vary
and M(x) is taken as Mt applied at the end of the member, the angle of twist

is determined from the equation:
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$(x) =35k
The total twist of the bar is:
ML
¢ (max =__GK
Ay Ay

DIRECTION OF VIEWING

APPLIED TORQUE

POSITIVE ANGLE OF ROTATION

Figure B8.4.2-1, General Orientation
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B8.4.2 UNRESTRAINED TORSION
II. STRESSES

The twisting moment (Mt) on thin-walled open sections is resisted
only by the torsional shear stress for unrestrained torsion. The torsional

shear stress at the edge of an element is determined by the formula:
= [
T Gt ¢' .

Because ¢ = MG_(KH the basic equation for determining the torsional shear stress

at an arbitrary point (s) on an arbitrary cross section is:

_ M(x)

T =
t St(x,s)
where
_ _K(x)
St(x’ 8) = t(x, s)

K(x) is evaluated at x = Lx where the torsional shear siress is to be
determined, -and t(x,s) is evaluated at the arbitrary cross section and at the
point(s) on the arbitrary cross section.

If the member has uniform cross section and M(x) is taken as Mt’

applied to the end of the bar, the equation reduces to:
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where

K
St(s --t—(—;) .

- The maximum stress 7 ¢ will occur on the thickest elementy t(s) is maximum.
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B8.4.2 UNRESTRAINED TORSION
III, WARPING DEFORMATION

The basic equation for determining the warping deformation w(s) at

any peint on an arbitrary cross section at a distance x = Lx from the origin iAs
s

w(s) - W =¢' _({ rds
where w(s) is the warping deformation at point (s) on the middle line of the
cross section in the x direction; v, is the displacement in the x~direction of
the point from which s is measured; r(s) is the distance of the tangent of arc
length ds from point o, taken positive if a vector along the tangent and point-
ing inthe direction of increasing s gives a positive moment with respect to

the axis of rotation (Fig. B8.4.2-2); ¢' is determined from Section BS. 4. 2-I.

Figure B8, 4. 2-2, General Section
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For the case of unrestrained torsion, the point 0 can be located
arbitrarily. V
The warping of the cross section with respect to the plane of average

w has been found to be
w(s) = ¢! Wn(S)

where Wn(s) is the normalized warping function found in Section B8.4. {-IVC.
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B8.4.2 UNRESTRAINED TORSION
IV, STRESS CONCENTRATION FACTORS

Stress concentrations occur in composite cross sections at any
reentrant corner; that is, at the intersection of the web and either of the
flanges in the I-section or at the interior angle joining the two legs of the
angle section. Exact analysis of stress concentrations at these points is
very difficult and must be carried out experimentally, usually by membrane
analogy. '

For many common sections, the maximum stress at the concave or

reentrant point is

= '
Tmax K3 G ¢

where (Ref., 4)

koD Jiefosisn (142) v o 20 ] 22
1+ Yea?

D = diameter of largest inscribed circle (Section B8.4.1-IVA)
A = cross-sectional area
p = radius of concave boundary at the point (positive)

6 = angle thfough which a tangent to the boundary rotates in rolling
around the concave portion, rad.

For angles with legs of equal thickness, the percentage increase of

stress in fillets is shown on Figure BS. 4. 2-3.
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240

200

Rl
N

\\

40 [

PERCENTAGE INCREASE OF STRESS IN FILLETS

0 0.4 0.8 1.2 1.6 2.0

RATIO —

Figure B8.4.2-3. Stress Increase in Fillets of Angles
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B8.4.4 EXAMPLE PROBLEMS
I. UNRESTRAINED TORSION

A member with an unsymmetrical section shown in Figure BS. 4.4-1 is
loaded by an end moment and is free to warp. If Mt =100 in. -lbs and L = 41 in.,

determine the maximum angle of twist, torsional shear stress, and warping

deformations,
I 0.940 ,
[ i D
t t= 0.]2 in.
_ A= 0,6912in.2
1,380 — G=3Xx 108 psi

.124

i

Cc

___C +L

b

0.541 3.380

Figure B8.4.4-1. Cross Section for Example Problem I
S d
Evaluate W__ = f p, ds:
(8]
W =0.124s for s < 3.380
os
WOS = 0.419 + 0. b4is for 4.760 > s > 3. 380

WOS=1.166—1.504S ' for s> 4.760
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Evaluate Wn( 8):

Then:

Page 32,2
{ b
W (s) =— of W tds - W
b 3.38 1.38 '
1 0.12
= J‘ Wostds NTIE {of 0.124sds + g’ (0.419 + 0.5418) ds

0.94 |
+ [ (1.166 - 1.504s)ds = 0.388.
o

Wn(s) = 0.388 - 0. 124s for s < 3.380
Wn(s) =~ 0.031 - 0.541s for 4.760 > s > 3. 380

Wn(s) =~ 0.778 + 1. 504s for s > 4.76 .

Therefore, at points on the cross section:

W (A) =0.388
W (B) =-0.031
W (C) =-0.778

W (D) =0.636 .
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The distribution of Wn( s) is shown in Figure B8. 4.4-2.
W, (C)
D
N
c
W, (D)
W, (A)
B //
A
W (B)

Figure B8.4.4-2, Distribution of Wn(s)

Warping Deformations (measured from mean displacement plane) :

W(s) = ¢' Wn(s) (Section B8. 4. 2-1M)

W(s) :‘E}N—IIZ Wn( s)

_ 100 (0.388)
WA) =570 % 3,285 x 10~°

W(A) =0.0039 in,
W(B) = - 0.0003 in.
W(C) =-0.0079 in.
W(D) = 0.0065 in.
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Evaluate K: ,

K=1/3 bt
K=1/3(3.38 + 1. 38 + 0. 94) (0.12)3
K=23.285x 10~% in.4

Maximum angle of twist:

ML

¢ (max) =-E;“<— (Section B8. 4. 2-1)

100 x 41
3x10°x 3.285 x 10~°

¢ (max) =

¢ (max) =0.416 radian .

Torsional SBhear Stress:

(Section BS. 4. 2-1I)
where
St(s) =

K
t

100X 0.12

—‘_"'__—J -
T¢=3.285x 10 3655 pel
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B8.4.3 RESTRAINED TORSION
I. ANGLE OF TWIST AND DERIVATIVES

It was shown that for unrestrained torsion, the torsional moment
resisted by the section is M; = GK ¢' (Section B8. 4.2-I).

Longitudinal bending occurs when a section is restrained from free
warping. This bending is accompanied by shear stresses in the plane of the
cross section, and these stresses resist the external applied torsional moment

according to the following relationship:
My=-ET pm

where

M, = resisting moment caused by restrained warping of the cross
section, in.-lb

E = modulus of elasticity, psi

I' = warping constant for the cross section (Section B8.4.1-IVB), in.§

¢'" = third derivative of the angle of rotation with respect to x.

Therefore, the total torsional moment resisted by the section is the
sum of M; and M,. The first of these is always present; the second depends
on the resistance to warping. Denoting the total torsional resisting moment

by M, the following expression is obtained.
M=M +My=GK¢'-ET ¢

or
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where

The solution of this equation depends upon the distribution of
applied torque (M) and the boundary or end restraints of the member.
Numerical evaluation of this equation for ¢, @', @', and 9" is
obtained from a computer program in the Astronautics Computer
Utilization Handbook for many loading and end conditions,

It is necessary to evaluate the foregoing expressions for the
angle of twist and its derivatives before a complete picture of stress

distribution and warping can be defined,
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B8.4.3 RESTRAINED TORSION
II. STRESSES

A. Pure Torsional Shear Stress

The equation for torsional shear stress is the same as given
in Section B8. 4. 2-1I; however, now the angle of twist varies along the
member and must be determined from the previous section,

Neglecting stress concentrations at reentrant‘ corners, the

pure torsional shear stress equation is
T = Gt 9.

This stress will be largest in the thickest element of the cross section,

For distribution of this stress for common sections, see Figures B8,4.1-3,
B8.4.1-4, and B8.4.1-5. This stress can be calculated by a computer
program from the Astronautics Computer Utilization Handbook for many
loading and end conditions,

- B. Warping Shear Strecss

When the cross section is restrained from warping freely
along the entire length of the member, warping shear stresses are
induced, These stresses are essentially uniform over the thickness
(t), but the magnitude varies at different locations of the cross section
(Figs. B8.4,1-3, B8.4.1-4, and B8.4,1-5). These stresses are

determined from the cquation:

ESWS
Tws = - hrr
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where

Twg = warping shear stress at point s, psi

E = modulus of elasticity, psi

Sws = warping statical moment at point s (Section B8, 4,1-IVD), in#

t = thickness of the element, in.

@' = third derivative of the angle of twist with respect to x,
distance measured along the length of the member.

This stress can be calculated by a computer program from the

Astronautic Computer Utilization Handbook for many loading and end

conditions,

C. Warping Normal Stress

Warping normal stresses are caused when the cross section is
restrained from warping freely along the entire length of the member.
These stresses act perpendicular to the surface of the cross section
and are constant across the thickness of an element but vary in mag-

nitude along the length of the element. The magnitude of these stresses

is determined by the equation:

EW . P

Q
[

ws = warping normal stress at point s, psi
E = modulus of elasticity, psi

Whg = normalized warping function at point s (Sec.B8.4.,1-IVC), in2

@' = record derivative of the angle of twist with respect to x,
distance measured along the length of the member,

This stress can be calculated by a computer program from the

Astronautic Computer Utilization Handbook for many loading and end

conditions,

PV
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B8.4.,3 RESTRAINED TORSION

I1I. WARPING DEFORMATIONS

Warping deformations can be calculated by using the same
equation that was given in Section B8.4,2-III, except that now @' will
vary along the length of the member, The expression for ¢' can be
obtained from Section B8. 4, 3-1 or values can be obtained from a
program given in the Astronautic Computer Utilization Handbook. It
should be noted that the warping normal stresses are proportional to
corresponding warping displacements; hence, by knowing the warping
displacements, a picture of distribution of the warping stresses is

evident,
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