SECTION B8.3
TORSION OF THIN-WALLED CLOSED SECTIONS
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B8.3.0 TORSION OF THIN-WALLED CLOSED SECTIONS

A closed section is any section where the center line of the wall forms
a closed curve.

The torsional analyses of thinewalled closed sections for unrestrained
and restrained torsion are inciuded. Torsional shear stress, angle of twist,
and warping stresses are determined for restrained torsion. Torsional shear
stress, angle of twist, and warping deformations are considered for unrestrained
torsion,

Analysis of multicell closed sections is beyond the scope of this analysis.
The analysis of multicell closed sections can be found in References 11 and 13.
B8.3.1 GENERAL

I. Basic Theory

The torsional analysis of thin-walled closed sections requires that
stresses and deformations be determined. The torsional shear stress (7 t) , plus
warping normal stress (ow) for restrained torsion, should be determined at
any point ( P) on a thin-walled closed section at an arbitrary distance (Lx) from
the origin. The angle of twist (¢) should be determined between an arbitrary
cross section and the origin plus the warping deformation (w) at any point ( P)
on an arbitrary cross section for unrestrained torsion.

As was the case for solid sections (see Section BS8. 2. 1-I), two unique
coefficients exist that characterize the geometry of each cross section. These
coefficients are called the torsional constant (K) and the torsional section
modulus (St) and are functions of the dimensions of the cross section.

The torsional shear stress distribution varies along any radial line

emanating from the geometric centroid of the thin-walled closed section. Since
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the thickness of the thin-walled section is small compared with the radius, the
stress varies very little through the thickness of the cross section and is assumed
to be constant through the thickness at that point.

Figure B8.3.1-1A shows a typical thin-walled cross section and Figure
B8.3.1-1B shows a typical element of this cross section. Equilibrium of forces
in the x direction (longitudinal) will give the following equation:

t, AX ,

L

T, tLAX = 71
!

sz

or, since shear stresses are equal in the longitudinal and circumferential

directions,
Tti t‘ = th tz .

This equation indicates that the product of the torsional shear stress and
the thickness at any point around the cross section is constant. This constant
is called the "shear flow" (q). Therefore:

q='rtt.

The internal forces are related to the applied twisting moment by the

following equation:
A 'Y
t 2At S
t
where
= 2A
St 2At

and A is the enclosed area of the mean periphery of the thin-walled closed

section.
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Element A

(A)

A. Stress Distribution and Internal Moment for
Thin-Walled Cross Section

B. Stresses on Element A

FIGURE B8.3.1-1 TYPICAL THIN-WALLED CLOSED CROSS SECTION
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Written in terms of shear flow, this equation becomes:

II. Limitations
The torsional anslysis of thin-walled closed cross sections is subject
to the following limitations:

A. The material is homogeneous and isotropic.

B. The cross section must be thin-walled, but not necessarily of constant
thickness.

C. Variations in thickness must not be abrupt except at reentrant
corners (see Section B8, 3. 3-1II).

D. No buckling occurs,

E. The stresses calculated at points of constraint and at abrupt changes
of applied twisting moment are not exact.

F. The applied twisting moment cannot be an impact load.

G. The bar cannot have abrupt changes in cross section.

H. The shear stress does not exceed the shearing proportional limit
and is proportional to the shear strain (elastic analysis).

III. Membrane Analogg

The same use can be made of the stress function represented by the sur-
face ABDE (Fig. B8.3.1-2) in solving the problem of the torsional resistance of
a thin-walled tube as was made of the function in Section B8. 2, 1-III for the solid bar.
These uses are as follows:
A. The twisting moment (Mt) to which the thin-walled tube is subjected
is equal to twice the volume underneath the surface ABDE and is,

therefore, given approximately by the equation

Mt=2AH
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FIGURE BS8.3.1-2 MEMBRANE ANALOGY FOR TORSION OF THIN-WALLED
CLOSED CROSS SECTION

where A is defined as in Section B8. 3. 1-I and H is the height of the
plane BD above the cross section.

B. The slope of the surface at any point is equal to the stress in the bar
in a direction perpendicular to the direction in which the slope is
taken. Hence, the slope at any point along the arcs AB or DE may
be taken as H/t. The maximum shearing stress in a hollow bar at

any point is, therefore,

Tt=‘H/t.

It can be seen that H is the same quantity as "shear flow, " defined in

Section BS8. 3.1-1.
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IV. Basic Torsion Equations For Thin-Walled Closed Sections

A. Torsional Shear Stress

The basic equation for determining the torsional shear stress at an

arbitrary cross section is:

;= M(x) _ M(x) _ _alx)
t St(x,s) 2A(x)t(x, 8) t(x, 8)

where
St(x,s) = 2A(x) t (x,s)

- Mx)
Q(x) SA(x)

and A is defined as in Section B8, 3. 1-1.

M(x) or q{(x) is evaluated for x = Lx at the arbitrary cross section where
the torsional shear stress is to be determined, and t(x,s) is evaluated at the
arbitrary cross section at the point (8) on the circumference of the arbitrary

cross section,

If a constant torque is applied to the end of the bar and the cross section

is constant along the length of the bar, the equations reduce to:

t -t . .9

T " 5(s) ~ 2At(s) ~ )
where M
-t
1= a

In the equations for torsional shear stress in Sections B8. 3.2 and
B8. 3.3, which follow, M(x) is equal to Mt and A(X) is constant and equal to
A. The equations in these sections determine the shear stress at any point

(8) around the cross section.
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B. Angle of Twist
The basic equation for determining the angle of twist bétween the origin

and any cross section located at a distance L from the origin is:

L L c ‘
1 rx o Mxo, 1 x ) M(x) ds
* g {) Kix,s) 7 16 fo A%(x) [fo t(s)](X) x

where C is equal to the length of the wall center line {circumference) and

ds
t{s)

c
Kix,s) = 4akx) [ [
0

When M(x) is a constant torsional moment applied at the end of the bar, A isa
constant, and t is not a function of x, the equation reduces to:
5= Mtl
GK(s)

where

C
d
K(s) = 4A2/_{) R_“:)

When t is a constant, the eguation reduces to:

5 - Mtl
GK
where
_ 4A%
K= "¢
The total twist of the bar is:
M1
¢ (max) = GK
where
4A%

C
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C. Warping Deformation

The basic equation for determining the warping deformation (w) at any

point (P) on an arbitrary cross section located at a distance x = Lx from the

origin is: ' C
R 0 ﬁ:_z)
w(s) -W S TaG j;) We) r(s) oA ds

where w(s) 1is the warping deformation at point (s) measured from the X-y
plane through the origin of the s coordinate system; W, is the distance from the
x-y plane through the origin of the mean displacement plane; and r(s) is the
normal distance to a line parallel to the increment of arc length ds (see
Example Problem 2, Section BS. 3. 4-II),

The mean displacement plane, which is located at the same z coordinate
as the undeformed cross section, will pass through those points on the cross
section that lie on axes of symmetry (see Example Problem 2, Section B8. 3.4-II).
For unsymmetrical sections, the point (8), measured from an assumed arc
length origin through which the mean displacement plane passes, is determined

by evaluating the following integral for s.

C
. (f ds
1 0_t(s) ) _
{ ts) " r(s) A ds = 0

D. Warping Stresses

Warping stress calculations are very complicated and cannot be put into
¥
a generalized form. Techniques for evaluating these stresses can be found in
Reference 1.

Warping stresses for a rectangular section are included in section
BB- 3. 3'11. .

Sy
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B8.3.2 CIRCULAR SECTIONS

I. Constant-Thickness Circular Sections

A constant-thickness, circular, thin-walled closed section experiences
no warping for unrestrained torsion and develops no warping normal stresses

for restrained torsion,

The torsional shear stress is determined by the following equation:

T, = —t
t St
where
S = 2At .
t

The torsional shear stress defined in terms of shear flow is determined

by the following equation:

T, = q/t
where Mt
1= A
The total angle of twist is determined by the following equation: -
ML
¢ (max) = K
where
2

II. Varying Thickness Circular Sections

A circular thin-walled closed section with varying thickness will warp
for unrestrained torsion, and warping normal stresses are developed for re-
strained torsion. The warping normal stresses and warping deformations are

negligible and can be neglected when the change in thickness is small and

gradual.



Section B8.3.0
31 December 1967
Page 10

The torsion shear stress is calculated in the same manner as for constant -
thickness circular sections, except that t is now a function of s.

The total angle of twist for a circular thin-walled closed section with
varying thickness is determined by the following equation:

MtL
# (max) = Gg
where
- _4a?
K C

-
&

0 t(s)
B8.3.3 NONCIRCULAR SECTIONS
I. Unrestrained Torsion

Noncircular sections experience warping for unrestrained torsion,
except for the case noted below, and develop no warping normal stresses.

Note that no warping occurs in a cross section that has a constant value
for the product rt around the circumference of the cross section,

Longitudinal warping deformations are usually not of concern and are
not evaluated. The use of the basic equation for determining warping defor-
mations for closed sections {see Section BS. 3. 1-IVC) is used in Example
Problem II (see Section BS. 3.4-III),

A. Elliptical Section

The torsional shear stress for constant thickness is determined by the

following equation:

. Y

t St
where

St = 2At
and

A= w[ab- L (a+b)+ —"2—]
2 4 .
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The values of a, b, and t are defined in Figure BS8.3.3.-1.
The torsional shear stress defined in terms of shear flow is determined

by the following equation:

= 4

Tt ot
where Mt
9% oA

and A is defined as above.

-

2b

209

FIGURE B8.3.3-1 ELLIPTICAL SECTION

The torsional shear stress for varying thickness is calculated in the
same manner as constant thickness, except that it is now a function of s, t(s).,
The total angle of twist for constant thickness is determined by the
following equation:
M, L

t
GK

¢ (max) =

where
1A%

K= C
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A is defined above, and the equation for C is, approximately,

(a+ b)?

2
C= nla+b-t) [1+o.27 M]

The total angle of twist for varying thickness is determined by the

following equation:

MtL
¢ (max) = g
where
__4A?
K= C
ds
0 t(s)

and the area is as defined in Section BS. 3. 1-1.

B. Rectangular Section (Constant Thickness)

The torsional shear stress for constant thickness is determined at

points A and B (Fig. BS.3.3-2) by the following equation:

Y

t St
where

St. = 2At

and A = ab - t(atb) + t2

The values of a, b, and t are defined in Figure BS. 3. 3-2.
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IR
>
o)

FIGURE BS8. 3.3-2 RECTANGULAR SECTION (CONSTANT THICKNESS)

The torsional shear stress defined in terms of shear flow is determined

by the following equation:

- 4

Tt t
where

M

97 %A

and A is defined as above.

The stresses at the inner corners (points C on Fig. B8.3.3-2) will be
higher than the stresses calculated at points A and B unless the ratio of the radius
of the fillet to thickness is greater than 1.5. For small radius rectangular
section stresses see Section BS, 3. 3-I1I1.

The total angle of twist for constant thickness is determined by the
following equation:

ML
GK

¢(max) =

where
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A is defined above, and C = 2(a+ b - 2t).
C. Rectangular Sections (Different Thickness)

The torsional shear stress for different but nonvarying thickness is
determined at points A and B ( Fig, BS8.3.3-3) by the following equation:

M
T, = ~t
t St
where
St = 2At1
for point A,
S = 2At2

t
for point B, and

A= (a'tz) (b-tl)

FIGURE B8, 3.3-3 RECTANGULAR SECTION ( DIFFERENT THICKNESSES)
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The torsional shear stress defined in terms of shear flow is determined

by the following equation:

= 4
Tt
for point A,
.
Tt

where A is defined as above.

The stress at the inner corners (points C) will be higher than the stresses
calculated at points A and B unless the ratio of the radius of the fillet to the
thickness is greater than 1.5, For small radius rectangular section stresses
see Section B8. 3. 3-I1I.

The total angle of twist for different but nonvarying thickness is determined

by the following cquation:

M L

¢ (max) = -~

where

2t,t,{a - t)? (b -t)?
3t1 + btz - t12 - tQZ

D. Arbitrary Section { Constant Thickness)
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The torsional shear stress for an arbitrary section with constant thickness

(Fig. B8.3.3-4) is determined by the following equation:

M
t St

where
St = 2At

and A is defined in Section BS. 3, 1-1,
$30

FIGURE BS8.3.3-4 ARBITRARY SECTION (CONSTANT THICKNESS)

The torsional shear stress defined in terms of shear flow is determined

by the following equation:

Q= Tx

2A
and A is defined as above.
The total angle of twist is determined by the following equation:

MtL
¢ (max) = ——
where GK
2
K = 4At .

C
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A is defined as above, and C, the circumference, is defined as follows:
C
c= [ ds
0

E. Arbitrary Section ( Varying Thickness)

The torsional shear stress for an arbitrary section with varying thick-

ness (Fig. B8.3.3-5) is determined by the following equation:

.Y
t St
where
= At
St 2

and A is defined in Section B8. 3.1-1. The shear flow is determined by the

following equation:,

sz0 t(s)

FIGURE B8.3.3-5 ARBITRARY SECTION ( VARYING THICKNESS)

where 2 ,[t

q= —Z—X—
and A is defined as above.
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Note that the maximum shear stress occurs at the point of least thick-

ness. The total angle of twist is determined by the following equation:

L
¢ (max) =M, Gx

where

Cds
Y
K—4A/b[ ts)

and A is defined as above.

II. Restrained Torsion

Restrained torsion of noncircular closed sections occurs at fixed ends and
at points of abrupt change in torque.
The warping normal stresses associated with the restrained torsion

attenuate rapidly, and their analytical determination is extremely difficult.

Torsional shear stresses associated with these restraints are calculated
as in Section B8. 3.3-I. The warping normal stress for the rectangular section

shown in Figure B8. 3. 3-2 is determined by the following equation:

= A
ow(max) X
where
_ tG g 1 -p? 2 1
K M, (a+b)! (=% )(i-p)

and m is obtained from Figure BS8. 3. 3-6.

IO. Stress Concentration Factors

The curve in Figure B8. 3. 3-7 gives the ratio of the stress at the re-
entrant corners to the stress along the straight sections at points A and B shown

in Figure BS. 3.3-2.
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a
a+ b

FIGURE. B8.3.3-6 VALUE OF nm1 FOR RECTANGULAR SECTION

3.0

2.5

rt(max)/tt

s N\

1.0 D

r/t

FIGURE BS. 3. 3-7 STRESS CONCENTRATION FACTORS AT
REENTRANT CORNERS



Section B8.3.0
31 December 1967
Page 20

B8.3.4 EXAMPLE PROBLEMS FOR TORSION OF THIN-WALLED CLOSED
SECTIONS

I. Example Problem 1.
For the problem shown in Figure B8. 3.4-1, it is required to find the

following:
A, Shear stresses at points A, B, and C on the cross section and maxi-

mum angle of twist caused by the torsional load.
B. Local normal stresses caused by restraint at the fixed end.

Solution:
A, From Section B8. 3. 3-IB, the shear stress at points A and B is
M
T, = L
t 2At

where A=ab-t(a+h)+ti

Therefore, A= 6(3) -0.2 (6+ 3) + (0,2)2
A = 16.24 in,?

and _ _ _100,000
t  2(16.24) (0.2)

Tt = 15,394 psi

For the maximum shear stress at point C, refer to Figure B8. 3. 3-7 for the

ratio of the stress at point C to the stress at points A and B.

T, (max)
£ - 1
Tt(A)

'rt(ma.x) = 1,7 (15,394)
‘rt(ma.x) = 26,170 psi

The maximum angle of twist i8 determined by the following equation from

Section B8, 3, 3-IB:
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ML
#lmax) = G~
where
K= 4%

C

and C = 2(a+b-2t)

il

Therefore, C = 2(6+38-21(0.2))

C=17.2
2
Ko A (1(1.7?42} 0.2
K= 12.27
S
¢{max} = 0,122 radians . \

t
AN\

a = 6 in, r = 0.1 in.

d t =0.2 in.,
/ G = 4.0 x 100
M, / x Boe0.33 5
b= 3 in, E = 10.3 x 10

M =1x10° in.-1p.,

t
FIGURE B8, 3. 4~1
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B. To find the normal stress at the fixed end, use the equations in
Section BS. 3. 3-I1I.

From Figure B8, 3. 3-6,
m= 0.3

- 2 __F_ 3
K 4Mt (a+Db)* ( ) ( “)

(0.2) (4 x 108 2 2 1 -0, 3%
= +
K 4x 10° (3+6)° J1-om (Tosx100

K= 24,217x 1078

0.33
24,217 x 10°%

g = = 13,620 psi

II. Example Problem .2

For the cross section shown in Figure B8. 3.4-2, it is required to find

the warping deformations of the points shown.

5 .
(dimemnsions are in inches) Mg =1 x 107 in.-1b.
v G = 4.0 x 106
g
a E
4
0.048 ' ‘ !
o
<
- = 0 —

=

Determine the distribution of warping

sin a = 0.2425 .. ON = 0.97

FIGURE B8, 3-4-2
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C
M s ds_
nw = —b 1 0 t(s)
w{s) W< ZAG j{; ) r(s) A | ds
C
or . ds
—g"" - - -1— ..__1_. - 0 t(ﬂ
Mt {w(s) wol Yy { Ts) r(s)(——-—————LZA ) ds

A = enclosed area of section = 6,0 in.?

[g.,) KD , _DC , _CF =252.062+ 4, 2.062
o ts) 0.048  0.064 0.048 | 0-048 "0.084 " 0.048

= 296.8 .

Choose point D as the origin and measure s from point D, For sector DC:
r=20.5 t= 0,064

4
280G 1w |- I 1 _ 0.5(296.8) | .
M, C D] < |[0.06¢ 2(6)

= 3.26(4)
= 13,04

For sector CF: r = 0,97 t = 0.048

2AG Aoz 0.97(296. 8)
— | vV, - W = f - ds
M, F- Y o 0.048 2(6)

1]

- {3.16)(2,062)

- 6.52



For sector FB: r « 0.97 t = 0.048 (Same as sector CF)

- 6.52

2 |g:
[»]
—

&

td

]

n-f
—

i

M A

_&é_ﬁ [w —w:lf- 13,04 .,
X B

For sector AK: (same as sector CF)

2AG
Mt wK-wA =-6.52

2AG _
Mt [WD-WK:I =-6.52 .
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Hence, the summation of warping deflections around the section from D back to

D equals zero.

Now it is desired to find the mean displacement plane (see Fig. B8.3,4-3).

From symmetry, points E,, F,, H;, and K, will lie on the mean displacement

plane.and will not deform from their original positions.

Therefore the distance



from point D to the mean displacement plane is

M D -

2AG [w 'Wo] - 652
t

Therefore the warping deformations are

6. 52 Mt

D C B A 2AG

6.52(1 x 10%)

2(6) (4 x 10%)

Section BS. 30
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= 00,0136 inch

Mean Displacement Plane

FIGURE B8.3.4-3
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II. Example Problem 3

For the problem shown in Figure B8.3.4-4, it is required to find the
following:

A. Maximum torsional shear stress at Lx = 0, Lx = -I-;— , and
L= L.

B. Maximum angle of twist.

Solution:

A. The formula for shear stress as obtained by Section BS. 3.1-IVA

is
r = M(x
t~ 2A(x) tix,s)
Therefore, at L, = 0, since M{(x) = 0, 7 = 0atL = L Mx = My
’ x 't X 2! 2
- 2 1.2
A(x) = 71y (1+-§-)
= 2 3
T Yy 2 "

The shear stress will be maximum at thickness of t;. Therefore

i}

7 (max)

4M,
2(2) 7 It 9 to

M 100, 000
= —— = =1, i
STrits oni5 2o - Latdpsl
Where L =L
X
Mix) = My
A(X) = 4 ‘KI‘oz

- _...__Mn_.{.__ -
7(max) = 2(4) 7 g ty 1,591 psi .
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to(l + sing)
— A r(x) s ry (1 + x/L)

A(x) =71l (%)

2tq

SECTION A-A

FIGURE B8, 3.4-4
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B. The formula for angle of twist is obtained from Section B8. 3. 1-IVB.

o [0 |
4 - M( ds
$= 3 .{)x v |:{) t(s):}(x)\ dx

l

~

Therefore, for maximum angle of twist

b Mo(—l’f)ro(1+(-f—‘)
160 = to fo 7 (1+ -—x—)‘ -

L

b l'o
_ M,L _ 1x10°x 30
® = BrtcitG 872(5)%(0.1)4 x 108

¢ (max) = 0.76 x 10~? radians



