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B7.3.0 BENDING ANALYSIS OF THIN SHELLS

_ In this section some of the theories discussed in Section B7. 0 will be
applied to solve shell problems. Section B7.0 defined the structural shell

and several shell theories, with their limitations and ramifications. It was
pointed out that the thickness-to-radius-of-curvature ratio, material behavior,
type of construction {e. g., honeycomb sandwich or ring-stiffened shells), types
of loading, and other factors all play a role in establishing which theory is
applicable. Furthermore, shallow versus nonshallow shells required different
approaches even though they fell into the same thin shell theory.

In this section, differential equations and their solutions will be tabulated
for simple and complex rotationally symmetric geometries subjected to arbi-
trary rotationally symmetric loads. There are certain restraining conditions,
called edge restraints, that the solution must satisfy. The edge restraints are
reduced to unit loads and, by making the solution of the differential equations
satisfy these unit edge restraints, the influence coefficients lor the geometry
are obtained. These influence coefficients, etc., are then used to solve prob-
lems that involve determining stresses, strains, and displacements in simple
and complex geometries.

The procedure for bending analysis of thin shells will be as follows: The
surface loads, inertia loads, and thermally induced loads are included in the
equilibrium equations and will be part of the "'membrane solution' using Section
B7.1. The solution due to edge restraints alone is then found and the results
superimposed over the membrane solution. The results obtained will be
essentially identical to those obtained by using the complete, exact bending
theory.

B7.3.1 GENERAL

The geometry, coordinates, stresses, and stress resultants for a shell
“of revolution are the same as given in Paragraph B7.1.1.0. Also, the nota-
tions and sign conventions are generally the same as those given in Paragraph
B7.1.1.1 and Paragraph B7.1.1.2, respectively. The limitations of analysis
are the same as given in Paragraph B7.1.1.3, except that in this section flexural
strains, stresses, and stress resultants are no longer zero. Boundaries of the
shell need not be free to rotate and deflect normal to the shell middle surface.
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B7.3.1.1 Equations

I Equilibrium Equations

A shell element with the stress resultants as given in Section B7. 1. 1.0
will now be considered and the conditions for its equilibrium under the influence
of all external and internal loads will be determined. The equations arising
by virtue of the demands of equilibrium and the compatibility of deformations
will be derived by considering an individual differential element.

The external loads are comprised of body forces that act on the element
and surface forces ( stresses) that act on the upper and lower boundaries of the
element, which are sections of the curved surfaces bounding the shell. The
internal forces will be stress resultants acting on the faces of the shell element.

For the following equations, external forces are replaced by statically
equivalent stresses distributed at the middle surfaces. The middle surface is
thus loaded by forces as well as moments,

Now, instead of considering the equilibrium of an element of a shell one
may study the equilibrium of the corresponding element of the middle surface.
The stresses, in general, vary from point to point in the shell and as a result
the stress resultants will also vary.

Consider the stress resultants of concern applied to the middle surface
of the shell as shown in Figures B7. 3. 1-1 and B7. 3. 1-2,

The equilibrium of the shell, in the 6, ¢, and z coordinate directions
respectively, is given by the following equations:
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FIGURE B7.3.1-1 TYPICAL SHELL REFERENCE ELEMENT WITH AXIAL

AND IN-PLANE SHEAR FORCES
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FIGURE B7.3.1-2 TYPICAL SHELL REFERENCE ELEMENT WITH
TRANSVERSE SHEAR, BENDING, AND TWISTING ELEMENTS
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where py, pz, and q are components of the effective external force per unit area
applied to the middle surface of the shell.

The equilibrium of moments about the #, ¢, and z coordinates results
in the following moment equilibrium expressions: '
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The force components of the last equilibrium expression are due to
warping of the faces, and result from in-plane shears and twisting moments.

Now, for shells of revolution the resullant forces fth()’ QO} and

moments (MW)) vanish and @y = Ry; @y = Ry sin . Therefore, the equilibrium

equations become:
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where the second, fourth, and sixth equations of { 1) have been identically
satisfied.

In the equilibrium equations presented here, changes in the dimensions
and in the shape of the element of the middle surface arising from its deforma-
tion have been neglected., This simplification arises from the assumption of
small deformations.

II Strain Displacement

For the particular case of axisymmetric deformations, the displacement
(V) is zero, and all derivatives of displacement components with respect to
f vanish. In this case the middle surface strain-displacement equations be-
come:

o_ o i du W

‘¢ "R, do = R,

o o ucot ¢ udRa w
0 Ry RiRyd¢p R,

(3)

0
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and the curvature and twist expressions become
cox o A d f1 dw
1" % 7 TRy do \ R, do T Ry

o 1 dRefldw
Ky = K, R1[09t¢+1i2 _—dfb:’[d(fr u] ‘ (4)
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. . dR
for general surface of revolution, the expressions

F7Y and —a]—{—df are as follows
for R = Ry sin ¢: | |

dR _
de - Ry cos ¢
dR |
§f=(Ri-R2) cot ¢ (5)
inserting equation ( 5) into equation (3) yields
ucot ¢ w
€2 = + —
R, R,
_ _coto ldw
Kz—_R1R2 [dd) —ll] ‘ (6)

while remaining strain-displacement equations of (3) and (4) are unchanged.

III Stress-Strain Equations

For an isotropic shell, the following constitutive equations relate stress
resultants and couples to components of strain:
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and where (middle surface) strains (e?, e? , 7102 ) are given in equation (3) and
change in curvature and twist terms (k4, x;, Ky») are given in equation (4),

IV Solution of Equations

By eliminating Q ¢ from the first and last equilibrium equations (2) and

determining the force resultants from equation (7), two second-order ordinary
differential equations in the two unknown displacement components u and w are
obtained. Rather than obtain equations in this manner, however, a transforma-
tion of dependent variables can be performed leading to a more manageable

pair of equations, which for shells of constant meridional curvature and constant
thickness, combine into a single fourth-order equation solvable in terms of a
hypergeometric series.

The transformation to the Reissner-Meissner equations is accomplished
by introducing, two new variables, the angular rotation

~ i dw
V=7, (“" dc{))

and the quantity

ﬁ:l{z%

This gubsti’ggtion of variables leads to two second-order differential
equations in U and V replacing the corresponding two equations in u and w. The
details of this transformation are illustrated in Reference 1.

For shells of constant thickness and constant meridional curvature or,
in fact, for any shell of revolution satisfying the Meissner condition, the trans-

formed pair of equations can be combined into a single fourth-order equation,
the solution of which is determined from the solution of a second-order complex
equation. For shells of the description above, the shell equations can be
represented in the simplified form:
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where the operator
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From the system shown above of two simultaneous differential equations
of second order, an equation of fourth order is obtained for each unknown.
Following operations described in Reference 1 yield an equation of the form

LL() + r*U=0

= EL ¢

2
D Ri

The solution of the fourth-order equation can be considered the solution
of two second-order complex equations of the form

L(ﬁ)*i Ieﬁ.—.o .

Reissner-Meissner type equations are the most convenient and most
widely employed forms of the first approximation theory for axisymmetrically
loaded shells of revolution. They follow exactly from the relations of Love's
first approximation when the meridional curvature and thickness are constant,
as they are for cylindrical, conical, spherical, and toroidal shells of uniform
thickness. Furthermore, they follow directly from Love's equations in the
more general case, provided that special restraints on the variation of thickness
and geometry are satisfied.
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B7.3.1.2 Unit Loading Method

Generally a shell is a statically indeterminate structure. The internal
forces of the shell are determined from six equations of equilibrium, which are
derived from the three-force and three-moment equilibrium conditions.

There are ten unknowns that make the problem internally statically
indeterminate because determination of the unknowns does not depend on the
supports. The situation is similar to one that occurs in a truss which, as used
in practice, is a highly statically indeterminate system. If reactions to the
applied loading can be found with the help of known equations of statical equilib-
rium, the system is externally determinate; however, a truss is a statically
indeterminate system internally because, instead of the assumed simplification
(which introduces hinges at the joints), all joints are welded or riveted to-
gether, This introduces the moment into the members. However, this addi-
tional influence is usually negligible. To find the statically indeterminate
values, deformations must be considered.

The main objective of the following sections is to bypass the elaborate
calculations by replacing the classical methods of elasticity theory with the
simplified but accurate procedure called the unit loading method. This is
accomplished by enforcing the conditions of equilibrium, compatibility in
displacement, and rotations at the junctions.

I Comparison of Membrane and Bending Theories for Nonshallow Shells

As discussed in Sections B7. 0 and B7. 1, the bending theory is more
general than the membrane theory because it permits use of all possible
boundary conditions. To compare the two theories, assume a nonshallow
spherical shell with some axisymmetrical loading built in along the edges. When
the results are compared, the following conclusions can be made:

1, The stresses and deformations are almost identical for all locations
of the shell with the exception of a narrow strip on the shell surface which is
adjacent to the boundary. This narrow strip is generally no wider than v Rt,
where R is the radius and t is the thickness of the spherical shell.
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2. Except for the strip along the boundary, all bending moments,
twisting moments, and vertical shears are negligible; this causes the entire
solution to be practically identical to the membrane solution.

3. Disturbances along the supporting edge are very significant; how-
ever, the local bending and shear decrease rapidly along the meridian, and
may become negligible outside of the narrow strip, as described in item 1.

Since the bending and membrane theories give practically the same
results, except for a strip adjacent to the boundary, the simple membrane
theory can be used; then, at the edges, the influence of moment and shear can
be applied to bring the displaced edge of the shell into the position prescribed
by boundary conditions. The bending theory is used for this operation. Con-
sequently, once the solutions are obtained, they can be used later without any
special derivation. The results obtained from application of both theories can
be superimposed, which will lead to the final results being almost identical to
those obtained by using the exact bending theory.

I Unit-Loading Method Applied to the Combined Theory

The solution of a shell of revolution under axisymmetrical loading can
be conducted in a simplified way, known as the unit-loading method.

1. Assume that the shell under consideration is a free membrane,
Obtain a solution for the overall stresses and distortions of the edyges by using
Section B7. 1. This is the primary solution.
2. Apply the following edge loadings:
a. Moment in inch-pounds per inch along the edge

b. Horizontal shear in pounds per inch along the edge

c. Vertical shear in pounds per inch along the edge
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These loadings should be of such magnitude as to be able to return the
distorted edge of the membrane into a position prescribed by the nature of
supports (edge condition). The third edge loading in the majority of cases is
not necessary. The amount of applied corrective loadings depends on the
magnitude of edge deformations due to the primary solution. The exact
magnitude will be determined by the interaction procedure to be explained in
Section B7. 3.2. However, to start the interaction process, formulas will be
necessary for deformations due to the following:

a. Unit-edge moment: M = 1 pound per inch
b. Unit-edge horizontal shear: Q = 1 pound per inch
¢. Unit-edge vertical shear: V = 1 pound per inch.

These solutions will be referred to as unit-edge influences, or as
secondary solutions.

3. Having the primary and unit-edge solutions, one can enter these
into the interaction process. This process will determine the correct amount
of corrective loadings (M, Q, and V); all stresses and distortions due to these
loadings can consequently be determined.

4. Superposition of stresses and distortions obtained by primary
solution and corrective loadings lead to the final solution.

B7.3.2 INTERACTION ANALYSIS

Missiles, space vehicles, and pressure vessels are examples of
structural configurations usually consisting of various combinations of shell
elements. For analysis, such complex shell configurations generally can be
broken down into simple elements. However, at the intersection of these
elements a discontinuity ( point of abrupt change in geometry or loading) usually
exists; that is, unknown shears and moments are introduced. The common
shapes that a complex shell may be broken down to include spherical, elliptical,
conical, toroidal; these shapes also occur in compound bulkheads. Figure
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B7.3. 2-1, for example, illustrates a compound bulkhead which consists of the
spherical transition between the conical and cylindrical sections. For analysis
of such a shell, the analyst must choose between two methods, depending on the
accuracy required: (1) he can consider such a system as an irregular one and
use some approximation, or (2) he can calculate it as a compound shell, using
the method of interaction.

In this section, the interaction method is presented which is applicable
not only to monocoque shells hut also to sandwich and orthotropic shells. The
interacting elements are often constructed from different materials. The load-
ing can also vary considerably. The most frequently used loadings are internal
or external pressure, axial tension or compression load, thermally induced
loads, and the thrust loads.

Note: Shell Theory Does
Not Apply Here.

Conical
Bulkhend

Spherical or
Toroidal

—

Cylindrical

FIGURE B7. 3.2-1 COMPOUND BULKHEAD
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B7.3.2.1 Interaction Between Two Shell Elements

For simplicity, the interaction between two structural elements will be
described first. The more general case of interaction of several elements, as
is usually the case when the combined bulkhead is under consideration, will be
described second. For the purpose of presentation, a system consisting of a
bulkhead and cylinder, pressurized internally, is selected. The bulkhead can
be considered as a unit element of some defined shape and will not be sub-
divided into separate portions in the great majority of cases. For example,
assume the pressurized container to be theoretically separated into two main
parts, the cylindrical shell and dome, as shown in Figure B7. 3. 2-2. Stresses
and deformations introduced by internal pressure (or another external loading)
can be determined for each part separately.

I EEENENN)
BAEEEER

8

- FIGURE B7.3.2-2 CYLINDRICAL SHELL AND DOME
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Assume that the membrane analysis (primary solution) supplied the
radial displacement (Ar = 60) and rotation ([JC) for the cylinder along the

discontinuity line and Ar = 6 d and 8 d for the dome. Since the structure is

separated into two elements,

#
60 Gd

+
ﬁc Bd
Consequently, there exists the discontinuity as follows:

(a) in displacement 6c ~ éd

(b) in slope Bc - Bd .

To close this gap, unknown forces (Q and M} will be introduced around
the juncture to hold the two pieces together.

Displacements and rotation of the cylinder due to unit values of Q and
M are defined as follows:

6 .
Q°%, @f and Mm% M/
C C C ¢

The corresponding values for the dome for the sume unit loadings will be:

6 B 6 B
Qd, Qdand Md’ Md .

These unit deformations and unit loadings at the junctions are presented in
Figure B7. 3. 2-3.
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B QJ Junction)
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M= 1
— r— Q=t N T\
&
Qc (Around the M(’)
Junction) c
Qﬁ
9 Mf’

(&4

— —

FIGURE B7. 3.2-3 UNIT DEFORMATIONS AND UNIT LOADINGS

To close the gap, the following equations can be written:

6 6 [0 6
<Q0+Qd)Q+(Mc+Md)M—-6c -5,
B, B -
(ra)as (e +8hes, -5,
Thus, with the two equations, the two unknowns (Q and M) can be determined.

It is noted that one cut through the shell leads to two algebraic equations
with two unknowns,

The following sign convention is adopted:
1. Horizontal deflection, ¢, is positive outward
2, Shears are positive if they cause deflection outward

3. Moments are positive if they cause tension on the inside fibers of
the shell
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4. Rotations are positive if they correspond to a positive moment.

In general, this sign convention is arbitrary. Any rule of signs may be
adopted if it does not conflict with logic and is used consistently,

Observe that in addition to M and Q, there is an axial force distribution
around the junction between the cylinder and dome (reaction of bulkhead), but
the effect of this force on the displacement due to M and Q is negligible,

B7.3.2.2 Interaction Between Three or More Shell Elements

In practice, most cases are similar to the two-member interaction
described in the previous paragraph. However, at times it may be convenient
to consider interaction of more than two elements. This can be performed in
two ways:

i. Interact first the two elements; then, when this combination is
solved, interact it with the third element, etc.

2. Simultaneously interact all elements.

The first method is self-explanatory. The second method requires
further explanation. If the shape of the bulkhead is such that its meridian can-
not be approximated with one definite analytical curve, such a bulkhead is called
a compound bulkhead and can be approximated with many curves as shown in
Figure B7. 3. 2-1.

In this case, two or more imaginary cuts through the shell will be
required to separate the compound bulkhead into component shells of basic shape.
This is shown in Figure B7. 3. 2-4, where the compound shell has two imaginary
cuts separating the three elementary shells ( spherical, toroidal, and cylindrical).
Figure B7, 3. 2-4 also illustrates the loading and discontinuity influences that
belong to each cut, The discontinuity influences will restore the continuity of the
compound shell. -
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Spherieal
Shel) \
Toroidal @,
Shell ~__
3 @)
p
Q Typicat]Element
Q4 ®
(Internil Pressure, #/in.%)

Cylindrical Shel!

FIGURE B7. 3. 2-4 DISCONTINUITY LOADS

The symbols used for the two successive cuts m and n are also shown in
Figure B7. 3. 2-4.

M f 0’ an = rotation at point n due to a unit moment M or unit
horizontal shear Q at point n

M 0 , Q(S = horizontal displacement due to the same loading in

nn’ nn . .
application points as above
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, @ = rotation at point n due to a unit moment M or unit
horizontal shear Q acting at point m

) . . .
M, Q = horizontal displacement due to the same loading in
nm’ ‘nm . .
application points as above.

Designating n = 1 and m = 2, the nomenclature above can be considered
proper indices for the toroidal portion (1) and @ as shown in Figure B7.3.2-4,

Additional nomenclature needed to cover the spherical shell portion of
Figure B7. 3. 2-4 is as follows:

Mz, Qg = rotations at point @ on the spherical shell due to a unit
moment or unit shear at the same point

6 6 . . .
MS, Q@ = horizontal displacements due to the same conditions as stated
above.

Similarly, displacements and rotations of point (I) on the cylindrical
shell are defined by using subscript ¢ (cylinder) instead of subscript s ( sphere).

Due to the primary loading (internal pressure), the rotations and dis-
placements will be indicated with 8 and Ar = A, As before, the subscripts ¢ and
s refer to the cylinder and sphere. The subscripts 1t and 2t will be used to
denote the toroidal shell at the edges () and @

Now the equations for the total rotation and displacement can be formed.

Spherical Shell:

6 0
= + +
6 = M_ My +Q @+ Ap

Bsz M2M2+Q§Q2 +‘Bsp
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Toroidal Shell:

6 6 6 6
Ogp = Ma2 Ma + Qpp Qp + Mpy My + Q3 Q1 + A, 0

th =M232M2+¢;Q24 MzﬁiMi"'&iQi"'Bth
5 (4] o} 6

By, =MbMy + Q5@ + MM, + Qfiq; + 8, p

Cylindrical Shell:

) =M(5

6
M, + +
c c 1 Qch Acp

B, =MiM1+ QﬁQ1+Bcp

c
The following compatibility equations must be satisfied:

6 =6

s 2t ﬁs ='82t

6c=61t Bc

= Bit

Following considerations of the relations above and some mathematical
rearrangements, a system of four linear equations with four unknowns will finally
be obtained. In matrix form they are:

e

5

o
My

6

(8-

B
M4

6
c

)

& 8
(Mzz - Ms).

M

(vf - f)

howd)

o

(Q?i -Q
&y

(eh-

[V
c

)

)

—

(¢-2)

Q%

(&-2)

-
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It is noted that two imaginary cuts lead to four equations with four
unknowns: My, M,, Qj, and Q,.

Previously, when considering only one imaginary cut, only two equations
with two unknowns were obtained. Consequently, if n imaginary cuts are intro-
duced simultaneously, 2n linear equations with 2n unknowns can be obtained.

It can be concluded that the problem of interaction is reduced to the
problem of finding rotation (8) and displacements ( Ar = 6) of interacting
structural elements due to the primary loadings and the secondary loadings
(M = Q= 1) (around the junction). The rotations and displacements then will be
introduced into a set of linear equations and statically indeterminate values (M
and Q) will be found.

B7.3.3 EDGE INFLUENCE COEFTFICIENTS

The shells considered in this section are homogeneous isotropic
monocoque shells of revolution. Thin shells are considered and all loadings
are axisymmetrical. Paragraph B7.3. 4 will present necessary modifications
of derived formulas for nonhomogeneous material and nonmonocoque shells.

B7.3.3.1 General Discussion

Unit loadings (defined in Paragraph B7.3.1.2) are the loadings acting
on upper or lower edge of shell:

M = 1 lb~in. /in.
Q =1 1b/in.

Unit influences are deformations and forces in a shell of revolution due
to unit loadings. Influences of this nature are of load character and do not
progress very far into the shell from the disturbed edge. Various differently
shaped shells are covered at this location. Of special interest is a shell that
represents a bulkhead, which is characterized with (pmax = 90° ; such bulkheads
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are very common in aerospace vehicles and pressure vessels. The bulkhead
shells are tangent to the cylindrical body of the vehicle.

When the values of deformations due to the unit loadings are available,
the deformations, along with the primary deformations, can be used to deter-
mine discontinuity stresses ( Paragraph B7.3.2).

The bending theory is used to obtain the influence coefficients due to
unit loadings. The fundamentals of this procedure were explained previously.

It has been mentioned that deflections and internal loads due to unit
loadings are of local imnortance. It can be concluded that disturbances due
to edge-unit loadings will disappear completely for a = 20° and will become
negligible for @ 2 10°, as shown in Table B7.3.3-1, for a spherical shell.

TABLE B7.3.3-1 UNIT-EDGE LOADING SOLUTIONS

SRR
l .

.
L
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Table B7. 3. 3-1 illustrates a very important conclusion: due to the unit-
edge loadings, practically all parts of the shell satisfying the condition @ = 20°
will remain unstressed and undisturbed. These parts will not be needed for
satisfying equilibrium. They do not affect the stresses and deformations in the
disturbed zone 0 < & < 20° in any way. The material above o = 20° can be
deleted because this material does not contribute to the stresses or strains,
which are computed for the zone defined by 0 < @ < 20°. No values of stresses
or deformations will be changed in the zone 0 < @ < 20° if we replace the
reinoved material with any shape of shell ( Figure B7. 3. 3-1) which illustrates
imaginary operations. Consequently, cases (A), (B), and (C} of Figure
B7. 3. 3-1 are statically equivalent. This discussion leads to the following
conclusions:

1. The spherical shell of revolution, loaded with the unit loadings
(M=Q=1), acts as a lower segment would act under the same loading (seg-
ment defined with o = 20°). Consequently, it does not matter what shape the
rest of the shell has ( Figure B7. 3. 3-2).

2. If any shell at the lower portion (which is adjusted to the load edge)
can be approximated with the spherical shell to a satisfactory degree, the’
solution obtained for the spherical shell which is loaded with M =Q = 1 all
around the edges (Figures B7.3.3-2 and B7.3.3-3) can be used for the actual
shell.

! Unloaded, Unstressed, and
Undeformed Part

|
|

o = 20
(A) (B (C)

—ran — O
)
]
bo
<
2

FIGURE B7.3.3-1 STATICALLY ANALOGICAL SHELLS
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|
¢
ri ’
j [rr = 20° / / r = 20° \ "
FIGURE B7,3.3-2 DIFFERENT FIGURE B7.3.3-3 APPROXIMATION
VARIANTS FOR UNSTRESSED WITH THE SPHERE
PORTION

3. When accuracy requirements ave relaxed, « = 10° may be used in
place of a = 20°,

Another approximation, known as Geckeler's assumption, may be useful;
i.e., if the thickness of the shell (t) is small in comparison with equatorial
radius (ry = a) and limited by the relation (a/t > 50), the bending stresses at
the edge may be determined by cylindrical shell theory, Meissner even recom-
mends a/t > 30. This means that the bulkhead shell can be approximated with a
cylinder for finding unit influences. Many solutions can be presented for various
shaped shells due to the unit loading action. This is done in the following para-~
graphs.

B7.3.3.2 Definition of F-Factors

The genera] solution of the homogeneous differential equation
W+ KAy = 0

can be represented with the following combination of trigonometric and
hyperbolic functions:
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cosh kLt cos kL¢ sinh kL¢ cos kL¢
cosh kL¢ sin kL¢ sinh kL¢ sin kL¢
where kL is a dimensionless parameter and ¢ is a dimensionless ordinate.
In the sections which follow, F-factors will be used that simplify the
analysis. Definitions of the F-factors in Table B7. 3. 3-2 are taken from

Reference 2. As a special parameter for determining the F-factors, 7 is
considered as follows:

F=F(n) i.e., Fy=sinh’y + sin’y
For a cylindrical shell

,4/ 3(1 - w?)

N Rt

n=kLor n=kLf andk =

For a conical shell

N

Ntx_ cotay
m

n=kLorn=kLandk=

For a spherical shell

n =k for F ; n=ka for F(a) and k = 4 a(1-p2) (R/1)?

Graphs of the functions are presented in Reference 2.
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TABLE B7, 3. 3-2 Fi( ¢) AND Fi FACTORS

i F(8) F,
1 | sinh? kL{ - sin? kL§ sinh® kL - sin® kL
2 | sinh® kL¢ + sin® kL¢ sinh? kL + sin? kL
3 sinh kLt cosh kL¢ + sin kL¢ cos kL¢ sinh kL cosh kL + sin kL cos kL
4 sinh kL¢ cosh kL¢ - sin kL cos kL¢ sinh kL cosh kL - sin kL cos kL
5 sin’ kL¢ sin? kL
6 | sinh® KL¢ sinh? kKL
7 cosh kL¢ cos kL¢ cosh KL cos kL
8 sinh kL¢ sin kL¢ sinh kL sin kL
9 cosh kL¢ sin kL¢ - sinh kL¢ cos kL¢ cosh kL sin kL - sinh kl. cos kl.
10 cosh kL¢ sin kL¢ + sinh kL¢ cos KLt cosh kL sin kL + sinh kL cos k1.
11 sin kL¢ cos kL¢ sin kL cos kL.
12 sinh kL¢ cosh kL.g sinh kL. cosh kI.
13 cosh kL¢ cos kLt - sinh kLE sin kLt cosh kL cos kL. - sinh kL sin kL.
14 cosh kL¢ cos kL¢ + sinh kL¢ sin kL¢ cosh kL. cos kL. + sinh kL. 8in k.
15 cosh kL.¢ sin kL¢ cosh kL sin kL
16 sinh kL cos kL¢ sinh kL cos kL
i7 exp(-kL¢ cos kL¢) exp({-kL cos klL.)
18 exp( -kLg sin kL¢} exp( -kl sin kL)
19 expl-kLg(cos kL¢ + sin kL¢)] expl-kL(cos kL + sin kL))
20 expl-kL¢(cos kL¢ ~ sin kL¢)] exp[-kL(cos kL - 8in kL)}
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B7.3.3.3 Spherical Shells

The boundaries of the shells considered herein must be free to rotate
and deflect vertically and horizontally because of the action of unit loadings.
Abrupt discontinuities in the shell thickness must not be present. Thickness of
the shell must be uniform in the range in which the stresses exist.

I Nonshallow Spherical Shells

Formulas will be tabulated for closed and open spherical shells. Open
shells are shells that have an axisymmetrical circular opening at the apex.
Unit-edge loadings may act at the lower or upper edge of the open shell. Linear
bending theory was employed for derivation of the formulas presented.

The following designations will be used:

k=4(RDE3(1-11); a= ¢ - ¢
Tables B7. 3. 3-3, B7.3.3-4, B7. 3. 3-5, and B7. 3. 3-6 are presented.

II Shallow Spherical Shells

This section presents, for shallow spherical shells, the solutions which
satisfy the relation

cot ¢ = i

¢

which is characteristic for the category of shallow spherical shells. Physically,
this means that for shallow shells the disturbances resulting from unit-edge
loadings will not decay before reaching the apex. Consequently, from diametri-
cally opposite edge loadings, disturbances will be superimposed in some area
around the apex.

Tables B7. 3. 3-7 and B7. 3. 3-8 are presented.
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TABLE B7. 3. 3-3 CLOSED SPHERICAL SHELL

¢
?
¢
M M
R R
Q Q ¢
ko -
Q -N2Q sin ¢y € k cos(ka + I s M ke ka
® 4 R
N - cot - cot
" qu ¢ G)‘p ¢
N, 2Qk sin ¢, e ™ cos ka 22 MRK ek cos(ka + %)
M BQ i ¢4 e ¥ sin ka 2 Me ™ sin (ka + Zr—)
¢ k 4
R - -
M6 JRe sin ¢4(cot ¢l e ka I-E cotp e ka cos ka + uM
K2 ¢
sin (ka + -}) + uM(p
- 3 -
Ft8 -2 N2QK sin ¢y e ke sin(ka + i—) - 4kRM e ke cos ko
Et(Ar) RQ sin ¢4 e-ka [2k sin ¢ cos ko - 2u R sin d)(NO - uNd’)
cos ¢ cos (ka+ %)]
Fora =0, ¢ = ¢,
7
Et8 -2QK* sin ¢, - i%M
ElAr) | QR sin ¢,(2k~sin 4 - peos «p,) 2 MK sin o,
For ¢y =90°, a= 0
3
Et8 -2KQ SV
R
Et(Ar) 2RkQ 2 KM
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TABLE B7. 3.3-4 OPEN SPHERICAL SHELL

Boundary Conditions

= R, . = |
o oo (_)1} ! I\ICJ )
“ik - Qik sin dy + Nik Ccos ¢,
o = (NO( oy ) MO0
Q-0
Internal Forces and Deformations
N I sin o cot o (o) - L Fyplaw) + L3 el
o ik o 10 ] i
. S . . [
NU -Hik k sin ul[rg(m -2 -l- o)+ —T I “;({1)]
Q H. sin oy F-(e) - I_t Frogtecd = Ll Ialcr)
Y ik T [y Y Fy
R, . o 1 [
M(.’) -”ik 2 O “1[‘[' ol ) 42 : Falov) - T, I':a“"’}
R . col h | R Iy [ cot
M” [lk'—)T\' sin '."1{ [—]\—- Fgla) - uF,.,(n)J + F_l l:T Falev) - ’uI«B(w}]
i &
+ ll [ﬂt—-‘— Fola) + pl“s(a):l }
l'l l\
i I I,
Ar - Bl( sin & sin ¢y [-Fg{ev) - 2 — Foa) + £ Figla
ll\ . ]'1 l'l
)k2 Fy oy
3 - sif ¢ w) - Folw) + Folal
I I T s [Fs( Fl ol ¢ F, 2 ]
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TABLE B7.3.3-4 OPEN SPHERICAL SHELL ( Continued)

¢ ik
=0
9
a = M. =0
0 ¢
Q =0
2<1>
Internal Forces and Deformations
2k | Fg Fs F3
N — | = -
I\T¢ Iik C0t¢ [Fi F‘S(Q) + F’ Fls (Q) Fl Fs(a)]
2K? [Fg Fy F
N, M T [F1 Fila) + F, Fyala) - F, Fw(a)
Q M —E—ﬁptanfilr(a)-—lp(a)
F.: |cot
Iylcote Fila) +uF9(a)]
F1 k
- Fg Fs EFY
Me Mlk[F F13(a} - F, F“(Ot)"' Fl Fg(a)]
2 [T Fs B
Ar Mik Et sin ¢[Fl F“(Q’)"' Fl Fm(a) —F] FN(Q)
4% [Fg F Fy
A ik EtR [F1 Fiela) - —i-"f Fyla) - I F-;(a)]
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TABLE B7. 3.3-4 OPEN SPHERICAL SHELL ( Continued)

Boundary Conditions

a=0(p=0) M, 0
=
Q(.‘) )
a =aglo =) I\l‘ﬁ =0
“ki = -()ki sin ¢y - Nki cos dy
Internal Forees and Deformations
N H, . cot & sin & T Figta) =2 Fy Fala)
N Ki 2 F 1 B,
Y H, . 2k sin &y} - B I y) + g Figl o)
7] ki IF1 ' ]4.1 1
. Fg 2Fg .
H  sin oy | 7= Fyglev) = =7 Fylor)
Qg ki 2 [1,1 10 Lev) r 8l :I
R . [E ¥y ]
- . " - Tal ey
I\IO Hki o sin oy F Fgla) r, Fy u)J
R Fq cot & 2Fg | cot ¢
h — si - |- F +p2tgloy) - = hlo) + puFqla)
‘\IO Hki ok Sin by {Fl [ " glov) + p21g( )] T " 7l HF,
. Rk . Fg Fg .
Ar -Hki sin ¢, i 2 sin rb[ﬁ Fila) - -;-;- F ,o(a)]
2k? [ Fy 2Fg
in &, =—|=2 + =2 Fla
B Hki sin @y Tr [Fx Fql ) F, 1l
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TABLE B7. 3. 3-4 OPEN SPHERICAL SHELL (Concluded)

4@ Mki
(7’2\

&y

®

Boundary Conditions

a=00¢=4¢, M(’,) 0

(Q(b 0
a=agd =g, Md) 4 Mki

(,)(p 0

Internal Forces and Deformations

N¢ Mki —%l-(- col I}:—? Filod - %% Iy u}J
NO ki % i-z il_? Faler) + H—u Iygler) ]
My My [2 ?: Falad - i‘% F"’W]
MB _Mki{% [‘C%:-i Fyla) - p‘.ll’,,((yﬂ+—:i—fg [5-(% Folead + Fq(a)]}
Ar Mki -:ft— sin ¢ [—2 ;—f Flw + :_;Q l"m{a)]




TABLE B7. 3. 3-5 SPHERICAL SEGMENT WITH FREE EDGES,
EDGE DISTORTIONS RESULTING FROM SECONDARY LOADINGS

Edge Distortions k Pk k

/N KT | N | AN

i i i

Loading Condition

e a3 o1l P I T
a2 g, D Sar, 2K 2R o, =K g, 2 e, SR 2Py
ik It s ry

H H. 2Rk .. F 2K? F 2Rk F a1 ,
Jk / ‘g \ ik H sin® ¢, =4 “H, == sin ¢, 22 ITRCLiL S Fy g 2K 2F
‘ - | tHy TSI F, H, Fr sin Py F, d, T singysing, Fy “ik o Sie by T
k
O I\

ik E1IR  F. ik Et R o AIik EWl Fy

N ) 2K* 2Fg 2Rk .., F 281 F
-il, . == sin }. sin p. -H = sin e =2 -1 sin® $., —4 - = sin p. =
KR by sin b ki Bu SR TE ha B Sk M o s )
F. _
o
2k 21, 2k eF e I PTG
=M = sin oy, S S M — i e + = i
Ki 11 I ki EtR  F, ki B TR MG Ew T

ze o8edg

69671 Axenuep 1¢
€ L9 uo1joag
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TABLE B7.3.3-6 OPEN (OR CLOSED) SPHERICAL SHELL EXPOSED TO

UNIT DISTORTIONS AT LOWER EDGE

Rotation g

Boundary Conditions

a=0(¢ =090y : Ar=0:]3=13,1k

o =Aao(¢=<,b2) :Ar=0:4=0

Internal Forces and Deformations

8. cotp = [—Fl Fa) + T4 Fy(a) - Fa(a):l

® ik 2k | F, Fy
N, -6, 2t [-% Fyla) + 2 {,—: Fyla) - F,o(a)]
Q¢ Bik %[% Fila) + % Fola) - Fa(a)]
M, -8 % - %Fw(a) +2 % Fyla) + Fylo)]
M, By %% {- % [c"lt( Fgla) - p.F,o(ozEI-t —E[i%i’ Fiote) - 21 F-,(a)]
-I:g—(’—l:—? Fla) + qu(Oe)]J
Ar _Bik -2% sin ¢[- %-tha) + 2 %’:‘ Fgla - Fw(arzl
B -ﬁik [- gl Fgla) + %Fio(a) - F-,(a}]
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TABLE B7.3.3-6 OPEN (OR CLOSED) SPHERICAL SHELL EXPOSED TO

UNIT DISTORTIONS AT LOWER EDGE ( Continued)

Displacement A
splacemen vik ’_.!..h

Boundary Conditions

a = (¢ =¢1) :t =0, AV=AVH~:
a=agd=¢): =0, AV=0
Internal Forces and Deformations
AV, Et cot ¢
N, R[(1* 7l sin #; Fy + K 008 #1 7] [- FsFila) - FyFigl@) + FgFyglal]
-AVikEtk
Ny R[(144) sin ¢y F3 + k cos ¢y Fy] [F3Fglo) - FyFyla) + FgFylal]
AV, . Ft
s [- Py Fila) - FgFyla) + FgFela)]
o R{(1+4) sin ¢y Fy +k cos ¢y Fy] = °° nal = Yy b o 6 Figl
wAvik Et
My 2k{(1+1) sin ¢y Fy + k cos oy Fy] [Fy Fypta) - FgFpgla) - FgFla)]
AV . Et '
ik cot ¢
¥ - -
My 2k{(1+p) sin &y F3 + k cos ¢4 Fy] { 3[ ) Tl “F”’(m] Fs
[E%_‘P_ Figla) - uF,s(aJ]— Fs[@%‘i Fyla) - pF“(a)]l
—AVik k sin ¢
Ar [(1,'_“) sin ¢1Fa+kCOS ¢1F1] [F3 Fg(a) - F5F14(Q’) + FsFm(Cl)]
2k? av,
B R((1+u) sin ¢y F3 + k cos ¢, Fy [FsFa(a) - F5Fygla) - FcFls(a)]
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TABLE B7.3.3-6 OPEN (OR CLOSED) SPHERICAL SHELL EXPOSED TO

UNIT DISTORTIONS AT LOWER EDGE (Concluded)

Displacement Ar

/"—l.‘ ""-\

ik

Boundary Conditions

a=0¢ =0¢y: Ar=Arik. =0

Q=0(¢=¢2):Al’=o,ﬁ:0

Internal Forces and Deformations

N, At cot ¢ i’i—f"it?{ [F1 Fpla) + —5~ Figla) - %ﬁ Fm(oz]J

N, ary H—s%?ﬁ [1;1 Fola) - —i i Fye) Eﬁ n(m]

Q ik EEES{;E; [F3 Fola) Ei Fyla) - Eﬁ Fis(“)]

M, Arik—‘éﬁ%&? - % [9-9%(-9- Fala) -uF,o(a)] + —Péi- [9%:—9 Figla) -pF,s(aEI
+ %ﬁ [EPTEQ' Fisla) - yFu(oz):”

Ar i« i:—'%,[ Fyla) - —-5 Frla) + J F,3(o:)]

8 ary ﬁ—ﬁ‘—a[*’i Fyla) - JFIGlaJ -3 Fm(a)]
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TABLE B7. 3.3-7 EDGE-LOADED SHALLOW

SPHERICAL SHELLS

Complete (or "Long")j r, -

Spherical Cap,
Shallow,
Constant t,
Edge Moment M

ry-a

=gy

a
&.—- by =

NS

Basis Esslinger's Approximation
d'Q d&’q d’Q aQ
¢, 2 ¢ 3 o . 3 ¢ 3
Differential + = - = + = -S- Q. +4K'Q. =0
4 3 3 2 3 1
Equation and de¢ ¢ d¢ ¢t de ¢* do ot ¥ @
Boundary . ) i
Conditions where k' = 3(1-4%)
Q =0 M =M
¢|¢, o o o s
C c
Soution 0y |28 ez - B ez X
Forces N ={(n, C +n_C._.) M
d L TIM T 2 VoMt
. M
Ng “tny it Cond 1
My=(m Cip* My Com! M
M, =nM¢+ (k, Cpy*k, Cop) M
% X,
Edge Influence CVM = - Efo, CwM - T

Coefficients

Notes: Approximate useful range: ¢, < 20°,
For Ber'(kN2¢), Bel'(k N2¢) see Reference 3.

For C CZM’ xa

etc. as function of k 'Jfb see Table B7. 3, 3-8

1M’

For ng, Ng, ...

, and Xb as functions of \ff% see Table B7. 3. 3-8.
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TABLE B7.3.3-7 EDGE-LOADED SHALLOW

SPHERICAL SHELLS ( Continued)

Complete tor "Long'™) | Ty "rp-a
Spherical Cap,
Shallow,
Constant t, H \ Ar
Edge Foree H gl -<+——H 9_’
8
Basis Esslinger's Approximation
" L dfg d*Q dQ
. . O 2 o 3 [l 3 ) 3 I
Differential “l‘)—i - _’-'i— - -J—I—— +— '—1— - Q +k'Q -0
[N ) Rk he ks ) . » i
Equation and ‘ ‘ > ' e “ ’ '
Boundary
Conditions . at
. where k%= 301 - oy -
2
Q. = -1l M 0
[} )
0= o IR

C &
(,)O - [;“ Ber'tk \f—'.’.o) - il

Salutiun " N Bei‘tk JZ,},,J H
Forces .\0 = (nl (,1“ + n2 C'ZH, H

Ny =(n Coyy *my Gy

M¢= (ml CIH + m, CZHJ Ht

= +
MO uM¢ (kl CIH + kz C‘ZH' Ht
Xa Wa

Edge Influence Cyy =T = —
Coefficients VH  Eto, wH " Eg,

Notes: Approximate useful range: ¢, < 20",
For Ber'(k V2¢), Bei'(k VZ¢) see Reference 3.

ForC, ., Copyr W, and X, as functions of k N2¢, see Table B7. 3. 3-8,

For oy, oy, ... etc., as functions of k NZ¢ see Table B7. 3. 3-8,
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TABLE B7.3.3-7 EDGE-LOADED SHALLOW
SPHERICAL SHELLS ( Continued)

Complete (or "Long") ry=rp=2a I 5
Spherical Shell, M M Ar
Shallow Opening, \ ! f iy ( .
Constant t, R J o \
Edge Moment M ]
a
¢’o'—’l
Basic Esslinger's Approximation
alqQ d*Q d’Q m
2 3 ; 3 3
Differentinl Equation ?‘pﬂ h ; T#')' - F TJ;L + 73- -—d—l-,ﬂ - F Q!ﬁ + .;qusb =0
and Boundary
Conditions h . 3 al
where k* - 3(1-u%) e
Q -l M -\
'ﬁ ¢)= 'f'O ﬁ l. .. .I,n
2 “!M (‘41\1 M
Solution Qs” - —-k——hel vk F2py o = Rer'tk 2 T
. M
Forees N, = ) b}
Qe \r’; l"ﬂ C3M + nq L4]\1; :
. \ M
N T Con 1 S S
= -
Mdi My C:;M vy Lm’ M
3 M. +{k C - R
t# M $ * ”‘:z L:sM k4 ¢ a’ M
Xd xc
Edge Influence C = =
= T
Cuoeificients VM Er$, wM  E¢,

Notes: Approximate useful range: ¢, < 20°.
For Ker' (k V26), Kel' (k VZ$) see Reference 3.

For C oy, € e X,o 80d X, a8 functions of kv 2¢, see Table B7. 3. 3-8,

For ny, ng, ... ete. as functions of k\2¢ see Table B7. 3. 3-8,
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TABLE B7.3.3-7 EDGE-LOADED SHALLOW
SPHERICAL SHELLS ( Concluded)

ry—=ry= a
Complete (or "Long")
Spherical Shell, ) Ar
Shallow Opening, >
Constant t, / \ ( \
Edge Force H
o4 "i

Basis Esslinger's Approximation

d'Q , d'Q ot

terentis e, 2 %% 5 T 5 My <,

Differential qat + a8 " P ag + i Q¢ $ 4KQ 0
Eqguation and ¢ b ¢ ¥ ¢
Boundary
Conditions where kY - 301 - i) 1_1“_

Q -Hp, M 0

,’ "’ ’y"u " R ‘I’fl
2 ¢ _3i .4

Selution Qrfz:‘; L K(l(k\f_lw t —— Kcer! (I\\f-tﬁ)
Forees .\"’ (n:i (_3“ *n, C -Hl) H

N (n:;C ”1'114C "J H

M(p (m3 C:m+m4(_4“) i

Mﬂ VM4> +\k3 C.'ill *rk4 (,‘4") Ht

X w

Edge Influence CVH =¥ Wc wii r—c
Coefficients ¢ “Po

Notes: Approximate useful range: #< 20,
For Ker' (k V2¢7, Kei'lk V2¢) see Reference 3

For C v C,p0o W and X as functions of k ~2¢, see Table B7. 3. 3-8,

For ny, ng, ... etc. as functions of k s@p see Table B7. 3. 3-8,
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TABLE B7. 3. 3-8 SHALLOW SPHERICAL SHELL COEFFICIENTS

Equatfons for the Esslinger Coefficients for Table B7. 3. 3-7

K )
C = _R[k..rf%¢. -(1-;.”,']
N ’ ’

K :
Cop =-~§1 [k\a’—z-%%-k(i-#)h]

Cim = - Kg i V61 -4D) Copy = Ka #1 Vour o)

Kg
Ya T d z [(k\'?%”wfw-}) -2k V2Pt gy - p oy ¢ L1 GDKR VTR r'*«»-""’]
A 1201 ~ ) 0 th-ph PETJR

= o3 H 1 a!
%, K:z[(k\z'fﬁo) W;h*’hh)]
X, =- Ky \N1201 < 1) [tk N2y gyt h'z,]
w t 1- " "y ~t
Kp = [{1 - b gt f’:'l]
k \,?'I’()
ny = \f? ‘—*l_ . - \‘T_)- —£'—-
k‘E‘I' k\-Z-fJ
m -2 -{nr—h"‘ mn -\.._’El»-&—}
kN2 k2
my = R h*H-u!—-‘b—
Ja(t- ) k24
! 4
m;, = === |y, -(1-4)
Jorr - [ k\/'2—¢:'
1y L
k; = —-—i-f— ny Ky - K 1y
12
%1 42, U4+ ¥ are Schleicher functions and thefr derivatives for the argument k v 24 and are

related to Bessel-Kelvin functions by §; = ber, ; = - bei, ¢; = ber', and {, = -bei'.

( Reference 1, pages 491-494, and 6-17, 6-20, and 6-32)
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TABLE B7. 3. 3-8 SHALLOW SPHERICAL SHELL COEFFICIENTS ( Concluded)

Equations for the Esalinger Coefficients for Table B7. 3. 3-7

K '
c. = =4 Eu/im w.-(i-u)w;]
W

= _Ku Yy
Cun = KN20g gy + (1-w) g,
Com= -Knudi Ne(1-p?) C o = Ksady N6(1-42)

w = .___.!‘__K [(k\r2-¢o)’(¢az+¢¢z) -Z(k"fé¢o)2 (%i w‘_w‘v “"3) +(1hu2)kﬁ¢o(%q+w‘n)]

LN FTYRI)

xc = =Ky, [(k'&%)z (43 99 + ¥y ‘Pt"]'
X, = Ky N12(1-42) [(k N2gp (§y? + %n,]
-1
K = [% Wty + e (yy° + ¢l'2ﬂ
kN2,
ns = JE —.—'E’:—_ ﬂ‘ ="/E—L
VET) k29
= --JE-¢+—J*‘,— ="‘E'}"’—ﬁ—]
n n ’
: [ ‘ kN2 ] ) k2p
1 1
my = - Yy + (I-J-l) o /-
Jo(1-u) [ k\’§¢]
1 1]
mg = - Yo -t1-u)
‘ Je(1-) [ ‘ k29 ]

142 1o

¥3. ¥4 9> ¥{, are Schleicher functions and their derivatives for the argument k NZ¢ and are
2
related to Beasel-Kelvin functions by g, = -fm, V=~ %m-, W= -} kei', and y; = - T ker'.

(Reforence 1, pages 491-404, and 6-17, 6-20, and 6-32)
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B7.3.3.4 Cylindrical Shells

This paragraph presents the solutions for long and short cylinders,
loaded along the boundary with the unit-edge loadings (moments, shear, forced
horizontal displacement, and forced rotation at the boundary). All disturbances
in the cylindrical wall caused by edge loading will become, for practical pur-
poses, negligible at distance x = NRt. If the height of the cylinder is less than
x, the analyst is dealing with a circular ring instead of a shell. Further, to be
conservative, the following precautions should be taken.

a. If kL = 5, the more exact theory is used, and such cylinders are
designated as short cylinders.

b. If kKL = 5, the simplified formula is used; this is a special case of
the more general case a,

The constant k is defined as follows:

k= 3(1 - p8) /R

The primary solutions { membrane theory) will not be affected by the
length of the cylinder. The boundaries must be free to rotate and deflect be-
cause of the action of the unit-edge loadings. The shell thickness must be

uniform in the range where the stresses are present.

I Long Cylinders

The formulas for the disturbances caused by unit-edge loadings are
presented in Table B7. 3. 3-9. In this table,

Et3

D=1/
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TABLE B7. 3. 3-9 LONG CYLINDRICAL SHELLS, UNIT-EDGE

LOADING SOLUTIONS
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II Short Cylinders

The following constants are used for Tables B7. 3. 3-10 and B7. 3. 3-11:

k' = 3(1-42)/R? ¢

p = sinh? BL - sin® BL

K; = (sinh BL cosh BL - sin BL cos BL) /p

Ky = (sin BL cosh BL - cos BL sinh SL) /p

Ky = (sinh? BL + sin® BL) /p

K4 = 2 sinh BL sin BL/p

K5 = 2(sin BL cos BL + sinh BL cosh 8L)/p

K¢ 2(sin BL cosh BL + cos BL sinh BL) /p

The formulas for unit-edge loading disturbances are presented in
Tables B7. 3. 3-10 and B7. 3. 3-11. To use these formulas the relation 8L < 5

must be satisfied.

A summary of edge distortions resulting from edge loadings is given in
Table B7. 3. 3-12.

B7.3.3.5 Conical Shells

- This paragraph presents the solutions for nonshallow open or closed
conical shells in which «, is not small. There is no exact information about
limiting angle . It is recommended that consideration be limited to the range
of vy = 45°. If @y = 90°, the cone degenerates into a cylinder.



TABLE B7.3.3-10 CYLINDRICAL SHELLS, EXACT FORMULAS FOR
UNIT-EDGE LOADING SOLUTIONS
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TABLE B7.3.3-11 CYLINDRICAL SHELLS, EXACT FORMULAS FOR
UNIT-EDGE DEFORMATIONS
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TABLE B7. 3.3-12 CYLINDRICAL SHELLS EDGE DISTORTIONS RESULTING FROM
EDGE LOADINGS

Edge L k -
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Load'mg p— - —
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Another limitation must be applied to the height of the cone. As in the
case of the sphere, the disturbances due to unit-edge loadings will decay at a
short distance from the disturbed edge (for practical purposes, approximately
at NRot). Consequently, a "high" cone is characterized by an undisturbed edge
(or apex) as a result of unit-loading influences on the respective opposite edge.

The boundaries must be free to rotate and deflect vertically and hori-
zontally as a result of the action of the unit-edge loadings. Abrupt discontin-
uities in the shell thickness must not be present. The thickness of the shell
must be uniform in the range in which the stresses exist.

The formulas are assembled for closed and open conical shells. Open
conical shells are characterized by removal of the upper part above some
circumference in the plane parallel to the base. :

Linear bending theory was used to derive the following formulas. If

the height of the segment is less than NRt, the analyst is practically dealing
with a circular ring instead of a shell. The following constants are important:

ke ——l— 3(1-18) , Rp= MAXR
-NRgt sin ¢

D= E
T 12(1-49

Additional designations are indicated in Figure B7.3.3-4,

R is variable and is perpendicular to the meridian. Angle (¢) is con-
stant. Table B7. 3. 3-13 presents the formulas for a closed conical shell.

1 Open Conical Shell, Unit Loading at Lower Edge

Since unit influences are not progressing very far from the edge into the
cone, the formulas presented in Table B7. 3. 3-13 can be used for the cone with
opening at vertex (Figure B7.3.3-5).
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FIGURE B7,3.3-4 CONE NOMENCLATURE

Opening

/ \}_’
Q W
M M
v (i‘

f

FIGURE B7.3.3-5 OPEN CONICAL SHELL LOADING
: AT LOWER EDGE
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TABLE B7. 3. 3-13 CONICAL SHELL, UNIT-EDGE LOADING SOLUTIONS
G,

Horizontal Unit Load

£

Unit Moment Loading
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II Open Conical Shell, Unit Loading at Upper Edge

If it is imagined that the shell, loaded as shown in Figure B7.3.3-6(A),
is replaced with shell as shown in Figure B7.3.3-6(B), the result is a conical
shell loaded with unit loading at the lower edge. The same formulas are used
for determining edge influence, but it is noted that ¢ > 90°. ‘

An additional set of formulas for open conical shells (that can be also
used for closed cone) is presented in Table B7. 3. 3-14. These formulas are
expressed with the functions F, and F.( £), which are tabulated in Paragraph
B7.3.3.2. The following constant is used for k:

fripe e
K= &‘/3(1-52)

/N
/ \\ |
@ AL 9

\/ \ s

M M
i Q ~ 1L 7 Q
B — o1
(A) Mooy M

FIGURE B7.3.3-6 OPEN CONICAL SHELL LOADING
AT UPPER EDGE



_ TABLE B7.3.3-14 OPEN CONICAL SHELL, UNIT-EDGE LOADING SOLUTIONS
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TABLE B7.3.3-14 OPEN CONICAL SHELL, UNIT-EDGE LOADING SOLUTIONS (Concluded)
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In connection with some problems, it may be of interest to know the
stresses and displacements’in the conical shell (closed or open), if unit dis-
placements at the edges are acting instead of M and Q:

Arik = unit displacement in horizontal
direction
At lower boundary i
Bik = unit rotation.
Ar,k = unit displacement in horizontal
! direction
At upper boundary k '
'Bik = unit rotation.

Table B7. 3. 3-15(a) supplies the answer to this problem. Table B7. 3. 3-15(b)
presents a summary of edge distortions resulting from secondary loading of a
conical segment with free edges.

B7.3.3.6 Circular Plates

A collection of solutions for circular plates with different axisymmetrical
loading conditions is presented in this section. Circular plates with and without
a central circular hole are considered. These solutions can be used individually
or in the process of interaction with more complicated structures. The following
nomenclature will be used:

w = deflection

B = rotation

E = Young's modulus
= Poisson's ratio

t = thickness of plate
D = Et}

12(1- 1)



TABLE B7. 3. 3~15(a)

OPEN CONICAL SHELL, UNIT-~-EDGE LOADING SOLUTIONS
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TABLE B7.3.3-15(a) OPEN CONICAL SHELL, UNIT-EDGE
LOADING SOLUTIONS ( Concluded}

B ®

ik

F F
2Di cot Lo 'Bki [E& F-{(g.) + -F-,-:-Fg(g)-Fs(g)]

2DIE cot a, Bik[—zﬂ Fp(t) + B Fs(g)]

X F.l Fy
N, | 20K x_cotayh [. %Fs(gh %F,(g) - F,o(g)] 4D x_ cotagh [. %FS‘E) + —??Fs(p]
M_| Dkg, [- %me + %mg; . Fg(g):' 2Dk B [- %Fm(g) + I‘:—:m(g)]
Q | 20¢ 8 E—i Fo(£) +% Fgl ) - Fa(gl] 2Dz Bik[% Fqolg) + f,—f Fg(g)]
Ar %ﬁnﬁki [— %Fg(g) + %Fa(g) - Fw(g)] S—mk—ag-ﬂik[— %Fg(g) + g—:ngg)]
B pm[ﬁ Flg) - %:Fw(g) + F7(g)] ﬁikﬁ_—Ff Fol£) - -E—jF,o(g)]

Fy

9¢ adeJ

6967 Axenuep 1¢

g ' Ld uorj0ag



TABLE B7. 3. 3-15(hb)

CONICAL SEGMENT WITH FREE EDGES. EDGE DISTORTIONS
RESULTING FROM SECONDARY LOADINGS

Edge Distortion
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Mr = radial moment
M t tangential moment
Qr = radial shear.

Other designations are indicated in tables presented in this section.

The formulas presented were derived by using the linear bending theory.
The "primary' solution is presented first; then '"'secondary' solutions are
presented in the same way as for the shells. Finally, special cases (fixed
boundary conditions) will be given.

I Primary Solutions

Primary solutions are assembled in Tables B7. 3. 3-16 and B7. 3, 3-17.

II Secondary Solutions

The only unit-edge loading of importance is a unit moment loading along
the edges (Figure B7.3.3-7). Table B7.3.3-18 presents solutions for this
loading for different cases of circular plate with and without the circular opening
at the center. Table B7. 3. 3-19 presents the stresses in circular plates resulting

from edge elongation.

I0 Special Cases

Special cases and solutions for circular plates that occur commonly in
practice are presented in this paragraph. The geometry, boundary conditions,
and loadings for special circular plates (with and without a central hole) are
shown in Tables B7. 3. 3-20, B7. 3. 3-21, and BY7. 3. 3-22.
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TABLE B7.3.3-16 SIMPLY SUPPORTED CIRCULAR PLATES

Loading Constant
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TABLE B7.3.3-16 SIMPLY SUPPORTED CIRCULAR PLATES (Continued)

Conical Distribution
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TABLE B7. 3.

3-16 SIMPLY SUPPORTED CIRCULAR PLATES ( Continued)

Circumierential Loading (Linear)
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TABLE B7.3.3-16 SIMPLY SUPPORTED CIRCULAR PLATES ( Continued)

Circumiferential Loading ( Moment)
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TABLE B7. 3. 3-16 SIMPLY SUPPORTED CIRCULAR PLATES (Continued)

Partially Equal Loading

P

p:COI'lSt.;p:pbzy\lrpaz“yx2 ; A= — P
zaw (TN
b=ax r=-ap ]
_ a a
&mxmug]mm? v
M
+ r .
TR *
For 0 = p=< X H Forx=p =1
o B alN Al Q, p
r Zaxw Qr=-2awp .

Py~ 1 a -
— (3= -7~ M T -1
P l-p{'; H (SR TTIRY X ny

Pa® 1 K
32D7 1+#‘[2(3+.U]-‘1-‘1)\"](1-p7) + 2(1#“)\? fnp + 4”*“’02 lnp}

{
—2[4—\l-u)x‘]— -i(l+u)1n\-p'?\1+yl'f_-—,
Pa i 2 1+p Pu 1 r ) ¥
’ —_— T - - - - - o —_— - - - - e
! 167D 1~ 9[4 Howxt - ARy Tp] 16D 1-p “:} e H”“p “prmpl

M
r

p
—_— [4-(1—#}\2-4(1+u)1n1—3‘p]

—p—[u-;‘z(l 1 41+:1]
Ten WX i )«\ uiinp

167
| ) 143 2} P i
\1 — - . _ - —_— _ -2 _
M 1671'[4 (l+p)x” - H1+p)iny xi' [ 6= [ u)[-l ‘(—Tp +1)] 4 1+u)lnp

€9 o8eq

6967 Arenuep ¢

€ "L UOT)0ag



Section B7. 3
31 January 1969
Page 64

TABLE B7.3.3-16 SIMPLY SUPPORTED CIRCULAR PLATES (Concluded)

Concentrated Loading
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TABLE B7. 3. 3-17 SIMPLY SUPPORTED CIRCULAR
PLATES WITH CENTRAL HOLE

Equally Distributed Loading (1b/in.?)
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TABLE B7. 3. 3-17 SIMPLY SUPPORTED CIRCULAR
PLATES WITH CENTRAL HOLE ( Concluded)

Concentrated Edge Loading (1b/in.)
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TABLE B7. 3.3-18 SIMPLY SUPPORTED CIRCULAR
PLATES WITH CENTRAL HOLE

Equally Distributed Edge Moment (p = ) Equally Distributed Edge Moment (p = 1)
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TABLE B7.3. 3-19 CIRCULAR PLATES, STRESSES IN PLATES
RESULTING FROM EDGE ELONGATION

Stress
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TABLE B7.3.3-20 CIRCULAR PLATE WITH CENTRAL HOLE

Equally Distributed Loading over the Surface Area
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TABLE B7.3.3-20 CIRCULAR PLATE WITH CENTRAL HOLE (Continued)

Equally Distributed Loading over the Edge Circumference
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TABLE B7. 3. 3-20 CIRCULAR PLATE WITH CENTRAL HOLE (Concluded)

Equally Distributed Edge Moment
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TABLE B7.3.3-21 CIRCULAR PLATES WITH CLAMPED EDGES

Loadiag Coastant

Parabolic Distribwiion
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TABLE B7.3.3-21 CIRCULAR PLATES WITH CLAMPED EDGES ( Continued)

Conical Distribution
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TABLE B7. 3. 3-21 ~CIRCULAR PLATES WITH
CLAMPED EDGES ( Continued)

Partially Equally Distributed Loading
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TABLE B7.3.3-21 CIRCULAR PLATES WITH
CLAMPED EDGES ( Continued)

Concentrated Loading
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TABLE B7.3.3-21 CIRCULAR PLATES WITH
CLAMPED EDGES ( Continued)

Circumferential Loading ( Linear)
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TABLE B7. 3. 3-21 CIRCULAR PLATES WITH
CLAMPED EDGES (Concluded)
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TABLE B7.3.3-22 SYMMETRICALLY LOADED CIRCULAR RINGS
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FIGURE B7.3.3-7 FORMULAS OF INFLUENCES FOR A SIMPLY
SUPPORTED CIRCULAR PLATE LOADED WITH EQUALLY
DISTRIBUTED END MOMENT ’

B7.3.3.7 Circular Rings

Circular rings are important structural elements which often interact
with shells. The theory of shells would not be complete without information
about circular rings. In this section, such information is summarized and
presented for symmetrical loading with respect to the center of the ring.

Nomenclature employed is as follows:

A = area of the cross section

Ij, I, = moment of inertia for the centroidal axis in the plane or
normal to the plane of the ring

J = torsional rigidity factor of the section.

Table B7. 3. 3-22 presents the solutions for different loads on rings.



