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B7.1.0.0 MEMBRANE ANALYSIS OF THIN SHELLS OF REVOLUTION

In engineering applications, shells that have the form of surfaces of
revolution find extensive application in various kinds of containers, tanks, and
domes. Furthermore, this type of shell offers a convenient selection of coor-
dinates.

Thin shells, in general, display large stresses and deflections when
subjected to relatively small bending moments. Therefore, in the design of
thin shells, the condition of bending stresses is avoided or minimized. If, in
the equilibrium equations of such shells, all moment expressions are neglected,
the resulting shell theory is called ""membrane theory,' and the state of stress
is referred to as a2 "'momentless’ state of stress. There are two tynes of
shells that comply with this membrane theory: (1) shells sufficiently flexible
so that they are physically incapable of resisting bending, and (2) shells that
are flexurally stiff but loaded and supported in a manner that avoids the introduc-
tion of bending strains.

The momentless state of stress in practical shell problems is difficult
to achieve. However, with the comparison of the complete bending analysis and
membrane analysis for a thin shell of revolution built in along its edges and
having noncritical axisymmetric loading, the following conclusions can be made:

1. The stresses and deformations are almost identical for all locations

on the shell except for a narrow strip of the shell surface adjacent
to the boundary. This narrow strip is usually no wider than NRt.

2. Except for the strip along the boundary, all bending moments,

twisting -noments, and vertical shears are negligible; this causes
the entire bending solution to be practically identical to the mem-

brane solution.
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3. Boundary conditions along the supporting edge are very significant;
however, local bending and shear decrease rapidly away from the
boundary and may become negligible outside the narrow strip.

For cases where bending stresses cannot be neglected or when a more complete
analysis is desired, see Section B7.3 for bending analysis.

Shells of revolution are frequently loaded internally or externally by

forces having the same symmetry as the shell itself. This loading condition is
referred to as axisymmetric loading and contributes significantly to the simplifi-

cation of the analysis methods presented in this section,
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B7.1.1.0 GENERAL

Before investigating the stresses and deflections of a shell of revolution,
we must examine the geometry of such a surface. A surface of revolution is
generated by the rotation of a plane curve about an axis in its plane. This
generating curve is called a meridian. The intersections of the generated sur-
face with planes perpendicular to the axis of rotation are parallel circles and are
called parallels. For such surfaces, the lines of curvature are its meridians
and parallels.

A convenient selection of surface coordinates is the curvilinear coordi-
nate system ¢ and 0, where ¢ is the angle between the normal to the surface
and the axis of rotation and ¢ is the angle determining the position of a point on
the corresponding parallel, with reference to some datum meridian. (See
Figure B7.1.1 - 1.) If the surface of revolution is a sphere, these coordinates
are spherical coordinates used in geography; 0 is the longitude and ¢ is the
complement to the latitude; hence, we have the nomenclature of meridians and
parallels.

Figure B7.1.1 - 1 shows a meridian of a surface of revolution. Let R
be the distance of one of its points normal to the axis of rotation and R, its
radius of curvature. In future equations, we will also need the length Ry, meas-
ured on a normal to the meridian between its intersection with the axis of
rotation and the shell surface. Noting that R - R, sin¢, the surface of the shell
of revolution is completely described by Ry and R, which are functions of only
one of the curvilinear coordinates, ¢ . Ry will be the radius of curvature when

¢ =0.
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Axis of Rotation

Datum Meridian
(Generating Curve)

Arbitrary Parallel

Arbitrary Point
on Surface

Arbitrary Meridian

Fig. B7.1.1 - 1. Geometry of Surfaces of Revolution
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The surface of revolution thus described will be that surface which bisects
the thickness of the shell and will henceforth be referred to as the "middie sur-
face" or '"reference surface.'" By specifying the form of the middle surface and
the thickness ''t" of the shell at any point, the shell is entirely defined geon;etri-

cally. Figure B7.1.1 - 2 shows an element of the middle surface of the shell.

/_ Axis of Revolution

Pair of Meridians

Pair of Parallels

do

Fig. B7.1.1 - 2. Shell Element, Middle Surface
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When the thickness of the shell is considered for analyzing the internal
stresses, it becomes apparent that the radius of curvature "R’ cannot be a
principal radius of curvature; e.g., it is not normal to the shell surface (except
when R = R, in the special case of circular cylinders). Henceforth, R, will
be used as the principal radius of curvature of an element in the parallel direc-
tion. (See Figure B7.1.1 - 3.) The error introduced by this assumption will
be negligible in all calculations. Note that Ry is a principal radius of curvature

in the meridional direction.

Fig. B7.1.1 - 3. Principal Radii of Curvature
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Any element of a shell may have the usual internal stresses acting on the
faces of the element. These stresses are indicated in Figure B7.1.1 - 4. For
the analytical work that will follow, it is convenient to convert these stresses
into the resulting forces and moments acting on the middle surface. In the
section 0= constant (Figure B7.1.1 - 4), the total force normal to this section

is by definition NO ds(p . It is the resultant of Uo stresses acting on this area.

Middie Surface

0 - Constant

(o 4]

TFig. B7.1.1 - 4. Shell Stresses

Because of the curvature of the shell, its width is not simply ds(p , but

ds¢ —-(-B—xﬁ_—z)— , and the force transmilted through it is (rods (1 - —I-:———) dz .
1 1
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The total normal force for the element ds¢ t is found by integrating from ~ £2-

t
toz.

-t
2 .
When dscp is dropped from both sides, we have the resulting normal force
related to the normal stress. In a like manner, T and 0z must be integrated

0
to obtain NO(b and QO . Altogether, we have

t
L b
2 z
N, - ft 06(1-E)dz
)
4
_ - Z
0 ft 0¢ (1 R1>dz
T2
t
2

Z
TOZ (1 R1 ) dz

Applying the same reasoning to the section ¢ - constant, we have

t
b =

N, = J 2o¢(1-§—2)dz

bo | er
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L
-2 Z
N - ——
o0 f T (1 /) dz.
2
and *t_
2 Z
Qd) j ‘bz( - R«,)d/ .

constant and ¢  constant.

Note the different radii of curvature for sections o

(Refer to Figure B7.1.1 - 2.)
If the stresses are not distributed uniformly across the thickness, bending
constant (Figure B7.1.1 ~ 3), the

and twisting moments may result., From 0

bending moment is

L
L
<2 Z
M, / Yh (1 B Ri) 7dz
_b
2

and the twisting moment is

N

) zdv

[\.—l""

o Z
M - —
”ib J T“C’) (1 ])\1
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In like manner, when ¢ = constant,

[N Lad

+ L+
Z
M, - Il 0¢<1— R_z) 2dz and M - f

noj

NOQ N¢’ N0¢’ N¢0| QO’ Q¢’ MO' M¢| Mo(p’

moments acting on the sides of a rectangular shell element. The fact that the

and quO describe the forces and

shell element is not necessarily rectangular will be considered when writing
the equations of equilibrium in Scction B7.1.1.4. Since these ten quantities are
all results of stresses, a common name for the group as a whole is "stress
resultants.” Figure B7.1.1 - 5 shows these stress resultants acting on the
middle surface of the shell element. According to membrane theory being con-
sidered in the chapter, resultant moments and resultant transverse shearing
forces cannot exist. Also, in the assumption of thin shell theory, the quantities

-Ii_ and ﬁz_ are very small compared to unity; thus, the only unknowns are the
1 2

three guantities N 0’ N , and N0 = N . Three equilibrium cquations can

¢ ¢0

be written for these three unknowns; hence, the problem becomes statically

determinate if the forces acting on the shell are known.
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Fig. B7.1.1 - 5. Stress Resultants
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B7.1.1.1 NOTATIONS

¢

Angle in vertical plane (measured from axis of
rotation) defining the location of a point on the
meridian

Angle in horizontal plane that controls the
location of a point on the shell

Radius of a point on the shell measured perpen-
dicular to axis of rotation

Radius of curvature of meridian at any point
Radial distance between point on the shell and the
axis of rotation

Radius of curvature when ¢ = 0

Shell thickness

Coordinate in direction of surface normal

Internal normal stresses
Inplane shear stresses

Circumferential inplane force per unit length at
) - constant.

Shear per unit length acting at ¢ constant
Transverse shear at ¢/ constant

Meridional inplane force per unit length at
¢  constant

Shear per unit length acting at ¢ - constant

Transverse shear at ¢ = constant
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Bending moment per unit length at section

0= constant

Twisting moment per unit length at section

0 = constant

Bending moment per unit length at section

¢ = constant

Twisting moment per unit length at section

¢ = constant

Loading components in radial, circumferential,
and meridional directions, respectively
Vertical load

Ccnstant of integration

Angle defining opening in shell of revolution
Displacement in the direction of the tangent to
the meridian

Displacement in the vertical direction
Displacement in the direction tangent to parallel
Displacement in the direction normal to surface
Displacement in the horizontal direction
Young's modulus

Poisson's ratio

Strain component in circumferential direction
Strain component in meridional direction

Radius of spherc or major axis length of ellipsoid
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Specific weight of liquid

Height of liquid head

Minor axis length of ellipsoid

Constant defining the shape of a Cassini dome
Coordinate along length of cylinder or along
generatrix of cone surface

Distance from apex of cone to upper edge of cone
measured along generatrix

Cone anglc

Arc length
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B7.1.1.2 SIGN CONVENTIONS

In general, the sign conventions for stresses, displacements, loads,
coordinates, etc., are given in the various figures in Section B7.1.1.0. The

following is a list of appropriate figures.

Coordinates Figure B7.1.1 - 1
Stress Resultants Figure B7.1.1 -5
Stresses Figure B7.1.1 - 4
ﬁoads Figure B7.1.1.4 - 4

Displacements Figure B7.1.1.4 - 4, Figure B7.1,1.4 -5
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B7.1.1.3 LIMITATIONS OF ANALYSIS

The limitations and assumptions of Section B7.1 are as follows:

1.

The analysis is limited to thin shells. A thin shell is usually
defined as a shell where the t/R relation can be neglected in
comparison to unity. However, this definition is artificial and
arbitrary unless those values which are negligible in comparison
to unity are defined. For example, if it is assumed that the usual
error of five percent is permissible, then the range of thin
monocoque shells will generally be dictated by the relation

t/R < 1/20. The great majority of shells commonly used are in the
1/1000 < t/R < 1/50 range. This means that they belong to the
thin-shell family. If an error of 20 to 30 percent is permissible,
the theory of thin shells can be used with caution even when

t/R =1/3.

Flexural strains are zero or negligible compared to direct

axial strain.

The deflections, rotations, and strains are small. (See Section
B7. 0 for detailed definition.)

The shell is homogeneous, isotropic, and monocogue and is a
shell of revolution.

It is assumed that Hooke's Law holds (stress is a linear function
of strain) and the stresses are within the elastic range,

The boundaries of the shell must be free to rotate and to deflect

normal to the shell middle surface.
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Abrupt discontinuities must not be present in shell shape, thickness,
elastic constants, or load distribution.

Linear elements normal to the unstrained middle surface remain
straight during deformation, and their extensions are negligible.
Transverse shear strains are zero throughout the thickness.
Surface stresses and body forces are negligible.

Only nonshallow shells are considered (See Section B7.0.)
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B7.1.1.4 EQUATIONS
I GENERAL

The equations presented in this section are for the membrane or
primary solution of the shell. The effects of boundary conditions (secondary
solutions) not compatible with membrane theory will be treated in Section B7.3
on kending theory. Because the bending and membrane theories give practically
the same results except for a strip adjacent to the boundary, the effects of
moments and shears near boundaries can be calculated by using bending theory
and can be superimposed over the membrane solution. The results thus obtained
will be almost identical to those obtained by using the complete, exact bending

theory.

>
Boundary Conditions

Not Compatible with
Membrane Theory

Boundary Conditions
Compatible with Membrane Theory

Fig. B7. 1. 1. 4 - 1. Boundary Conditions
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B7.1.1.4 EQUATIONS
II EQUILIBRIUM EQUATIONS

The membrane solution is begun by considering the equilibrium of the
middle surface of the shell element, cut by two meridians and two parallels
(Figure B7.1.1.4 - 2a). The conditions of its equilibrium will furnish three
equations in three unknowns, adequate to determine the three unknown stress
resultants: the meridional force N . the hoop force NG , and the shear

N0¢=N¢9.

Beginning with the forces parallel to a tangent to the meridian, the shear
transmitted by one edge of the element is N() ® R;d¢, and on the opposite edge
ON oN

it is (N0¢ + _ﬁ@ do) Riyd¢ . Only their difference, —Ea—OiQ-Rldodqb, enters

the equilibrium condition. In the same way, we have the difference in the two

meridional forces. Bearing in mind that both the force Nq; and the length Rdg

vary with ¢, we have -5—5 (RN¢ )d¢do . The hoop forces also contribute.

The two forces N0R1d¢> on either side of the element lie in the plane of a

parallel circle where they include an angle d9 . They, therefore, have resultant

force N0R1d¢>d0 situated in that plane and pointing towards the axis of the shell.

Resolving this force into normal and tangential components shows that

N9R1d¢ do cos¢ (Figure B7.1.1.4 - 2b) enters the condition of equilibrium.

Finally, considering the component of some external force, Pd)RR dod¢ , the
equilibrium equation reads:
aN
00 2 (RN
50 R,dod¢ 3 qb(

qb)dqbdo —N0R1d¢d0 cos¢ + P¢RR1d0dc,t> =0 .
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Noting that all terms contain dod¢ gives:
aN
9 0¢
——(RN - -
a(p(R (1))+R180 R‘jNOCOS¢+ quRRl 0o . (1)

I NoRcoseddodo

{a) (b)

Fig. B7.1.1.4 - 2. Equilibrium of Shell Element

By similar reasoning, we obtain an equation for the forces in the direc-

tion of the tangent to a parallel circle.
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o N
o]

2 (RN )+ R,—2 + RN

50 0 cos ¢ + PGRRI:O . (2)

0¢

The third equation is derived from forces perpendicular to the middle
surface of the shell.
. NgRlsincp + N¢R 'PZRRI = 0
Dividing by RRy and using the geometric relation R = R,sin ¢, we arrive at

the third equation of equilibrium.
2, L2_p (3)

The broblem of determining stresses under unsymmetrical loading
reduces to the solution of equations (1), (2), and (3) for given values of the

loadP¢, PO’ ansz.

However, it was stated previously that only axisymmetric loading would

be considered in this section. For this type of loading, the stresses are inde-

pendent of 0 and N qu: N¢> 0 = 0. Therefore, the equations of equilibrium
reduce to:
d
—_— - R;N = =P RR
dcp(RNq)) Ry Ocoscp ¢ 1 {4)
"N NO
-2, 2_p | (3)



Section B7.1
31 May 1968
Page 22

B7.1.1.4 EQUATIONS
III STRESS RESULTANTS

By solving equation (3) for N 0 and substituting the results into equation
(4), we obtain a first order differential equation for N<Z’> that may be solved by

integration. N 0 can then be obtained by equation (3).

1 . .
N¢ = m [leRZ(PZCOqu —P(p smqb)sm¢d<b+C:|

N
N, = R, (PZ - f)
The constant of integration "C" represents the effect of loads applied
above a parallel circle ¢ = ¢ . 2rC is the resultant of these forces. If the
shell is closed, the loading will degenerate to the concentrated radial [orce

PZ at the vertex of the shell. (See Figure B7.1.1.4 - 3a.)

If the shell has an opening, the angle ¢ defines the opening and the
loading (lantern type loading, Figure B7.1.1.4 - 3b) results in the following:

P P

Nd) T Zszsin!qb ’ N() 27rRlsinz¢

These loads may be treated as additive loads because of the loaded opening at
the vertex of the shell. Bending stresses will be introduced at ¢ but will tend

to dissipate rapidly with increasing ¢ .
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(a) kP, (b)
P
P P P
- ._‘ lylyiy]
A
)
bo Jars
Closed Shell .
as ¢4 Approaches Zero Loading Open Shell
Approaches P { Lantern Loading)
z

Fig. B7.1.1.4 - 3 Loading above ¢ = ¢,
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B7.1.1.4 EQUATIONS
IV STRESS, STRAIN, AND DISPLACEMENT

Once the stress resultants, N¢> and N(), are obtained, stresses, strains

’

and displacements are readily obtained by the usual methods. For the symmet-
rically loaded membrane shell, the loading component and displacement in the

circumferential direction are zero (Figure B7.1.1.4 - 4).

Fig. B7.1.1.4 - 4. Loads and Displacements

Pz = Radial component of loading acting on differential element
P¢ = Component of loading acting in X direction (targential to meridian)
PB = 0 = Component of loading acting in Y direction (targential to parallel)

w = Small displacement of a point in the Z direction (normal to surface)
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u = Small displacement in X direction (targentiallito meridian)

v = 0 = Displacement in Y direction (targentialto parallel)

Because of assumptions of membrane theory and axisymmetric loading
(e.g., t/R << 1, all moments =0, and all shearing forces =0) the normal

stresses can be expressed simply as:

N N,
g - —-Q , c = —
¢ t 0 t

The strain components can be found either from o o and A or N ® and N b "

i
-uNO) , € = -E_t(N = uN )

1
" Tt (N 0 0 o

¢ ¢

where E = Young's modulus

t

Thickness of shell

Poisson's ratio .

il

M
The displacement components are computed next, thereby completing
the solution of the shell problem. The general solution for u is
s (o)
u sin ¢ l:f Sin o dp + C
where C is a constant of integration to be determined from support conditions

and

1
f(¢) = R1€¢‘ RZGO = —ET[RI(N¢- HNG) - RZ(NO -,uNd))J

i
= [N¢(R1+MR2) - N0<R2+uR1)]

The displacement w can then be found from the equation

w = ucot¢ - RzGO



Section B7.1
31 May 1968
Page 26

Because the interaction process of two or more shells is often required,
displacements are often calculated in terms of u and ;v, the vertical and hori-
zontal displacements. (See Figure B7.1.1.4 - 5.) Note that when R, =R,
u=u and w=w. The displacement u can be found in a manner similar to the
solution for u. The general solution for u is

u = Regcotq‘; - f%{%dqb +C

where f(¢) = Ry e¢ - R2€0 and C is again a constant of integration determined

from support conditions. The horizontal displacement is simply

w = Re
8

(u and w known) (uand w known)
W = wsing + ucos ¢ w = wsin¢g - ucosg¢
U =-wcos¢ + using u = wcos¢ + using

Fig. B7.1.1.4 - 5. Displacements
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These formulas (Figure B7.1.1.4 - 5) can be used to convert from one
form of displacement to the other, depending on the given solution and the

requirements of the user.
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B7.1.1.4 EQUATIONS

V SUMMARY

Application of the solutions presented in this section can be classified
conveniently for the two following cases: general shell of revolution with
general axisymmetric load distribution, and general shell of revolution subjected
to uniform pressure. Table B7.1.1.4 - {1 presents a summary of solutions for
these general cases,

The remainder of this section presents practical shell of revolution
problems with various types of axisymmetric loading. Based on the various

shell geometries, solutions for N¢ and NG are presented with the force-

displacement relationships. The stresses can be calculated directly using

the equations in Section B7.1.1.4 - IV,



Table B7.1.1.4 - 1. Summary of Equations, Axisymmetrically Loaded Shells of Revolution,

Linear Membrane Theory

N
¢
No
N
¢
N
[o]
L
P 4
1
° i N
General Shell of Revolution
General Shell of Revolution Uniform Pressure
. . . Deflected
General Axisymmetric Loading ie
; Position
1 [ . R.P
- P si d C N ——
N¢ ﬁst’E [j R,Rz(Pz cos ¢ o sing) sin¢ do + ] o )
Zo RP (, R
N - N —_
Ny R, (Pz R, N 3 R, )
N
No NG No 0
g = — -_— (LAY -_ -
o' % n » t 0 t t
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