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B7.0 Thin Snells

Basic relationships governing the behavior of shells whose
thicknesses are small relative to their surface dimensions and to their
principal radii of curvature are summarized in this section. This
thinness admits various approximations to the three-dimensional stress
state. The degree of approximation best suited for a particular analysis
depends on the shell shape, the type of loading, and the material of
which the shell is made. Consequently, there exists a variety of
approximate thin-shell theories.

The various thin shell theories to be used in subsequent
analyses are discussed below. The purpose is to familiarize the
analyst with the foundations upon which commonly employed shell e-
quations are based.
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B7.0.1 Thin Shell Theories

Theories of thin shells may be broadly classified according
to the fundamental theories which they approximate:

I The Theory of Linear (classical) Elasticity
II Nonlinear Elasticity
III Inelasticity

The most common shell theories are those based on linear
elasticity concepts. These theories adequately predict stresses and
deformations for shells exhibiting small elastic deflections; they are
also adaptable to some buckling problems.

The Nonlinear Theory of Elasticity forms the basis for finite
and large deflection theories of shells. These theories are often re-
quired when dealing with shallow shells, buckling problems, and highly
elastic membranes. The nonlinear shell equations are considerably
more difficult to solve and therefore are more limited in use.

Shells in the inelastic range will not be discussed in this
section.
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B7.0.2 Thin Shell Theories Based on Linear Elasticity

The classical three-dimensional equations of Linear Elasti-
city are based upon the following assumptions:

l. Displacement gradients are small; i.e.,

N«

)

where u; = generalized displacement, i =1, 2, 3

»
1]

generalized coordinate, j =1, 2, 3

2. Products of displacement gradients are therefore
negligible compared to the gradients themselves. By this assumption,
strains and rotations are necessarily small and they become linear
functions of the displacement gradients, i.e.,

€
b= %m0 V2. 9u 4 99
0 %2 3 x)

.
b

3 Xy %2

etc.

3. Itis further assumed that the Generalized Hooke's Law
holds, an assumption which is naturally compatible with the small
strain condition. Hooke's Law, in its general form, states that the
six components of stress at any point are linear functions of the six
components of strain at that point,

When dealing with thin plates or shells, the stresses in
planes parallel to the surface arc of prime importance, the normal
stresses being of little practical significance. Hence, a completc
three-dimensional solution is generally not warranted, Sufficiently
accurate analyses of thin plates and shells can be performed using
simplified versions of the gencral Linecar Elasticity equations.

The sclection of the proper form of these approximations
has been the subject of considerable controversy among the many
investigators in the field. As a result, there is in existence a large
number of general and specialized thin shell theories, developed with-
in the framework of linear clasticity. The most commonly encounter-
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ed theories will be discussed in the subsequent sections and classified

according to the assumptions upon which they are based.

The various linear shell theories will be classified into five
basic categories:

1. First-Order Approximation Shell Theory

2. Second-Order Approximation Shell Theory

3. Shear Deformation Shell Theory

4. Specialized Theories for Shells of Revolution
5. Membrane Shell Theory

In the case of thin shells, the simplified bending theories of
shells are (in general) based on Love's first-approximation and second-
approximation shell theories. Although some theories do not adhere
strictly to Love's two original approximations, they can be considered
as modifications thereof and will be categorized as either a first or
second approximation.

Although the Shear Deformation and Specialized Shell theories
presented are based on Love's first-approximation, they are classified
separately because of their particular physical significance.

Linear membrane theory is the limiting case corresponding
to a zero-order approximation, or momentless state.
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B7.0.2.1 First-Order Approximation Shell Theory

Love was the first investigator to present a successful
approximate shell theory based on linear elasticity. To simplify the
strain-displacement relationships and, consequently, the stress-strain
relations, Love introduced the following assumptions, known as first
approximations and commonly termed the Kirchhoff-Love hypothesis:

1. The shell thickness, t, is negligibly small in comparison
with the least radius of curvature, R, i, of the middle surface; i. e
t

.

<< 1 (therefore, terms z ¢¢1).
min R

2. Linear clements normal to the unstrained middle sur-
face remain straight during deformation, and their extensions are
negligible,

3. Normals to the undeformed middle surface remain
normal to the deformed middle surface.

4. The component of stress normal to the middle surface is
small compared with other components of stress, and may be neglect-
ed in the stress-strain relationships.

5. Strains and displacements are small so that quantities
containing second-and higher-order terms are neglected in comparison
with first-order terms in the strain equations.

The last assumption is consistent with the formulation of
the classical theory of linear elasticity. The other assumptions are
used to simplify the elasticity relations.

By the thickness condition, assumption (1} above, the
ratios z and 2z are negligible relative to unity. From this condi-

rl rz

tion, the ten stress resultants that act on an infinitesimal element (N¢, ,

Ng., Qé, Qg, Qoo, Qop, Mg, Mg, Mo g, and Mg ) reduces to eight,
since Q¢ o = Qo and Mog = M.

Assumption (2) of Love's first approximation is analogous
to Navicr's hypothesis in elementary beam theory, i.e., plane sections
remain plane during bending.
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The strain equations are further simplified through assump-

tion (3), by which transverse shear deformations are neglected. As a
consequence, normals to the middle plane not only remain straight but
remain normal and have the same rotation as the middle surface. The
degree of error introduced by this assumption naturally depends on the
magnitude of transverse shearing forces; in local areas around a shell
edge such shear deformations may be comparable to bending and axial
deformations,and cannot be ignored. In general, however, shells
loaded by continuously distributed surface forces, and having flexibly

supported edges, can be assumed to have negligible transverse shear
deformations.

By the fourth assumption, forces applied to the surface of
the shell are stated to be so distributed that directly imposed stresses
are small., Furthermore, direct normal stresses through the thickness,
f,, are taken to be insignificant due to the large radius-to-thickness
ratios of the shell. '

Practically speaking, the solution of the simultancous
differential equations of Love's first order approximation theory is
possible only in rare cases, or with additional approximations. In
the case of a loaded structure, the general solution of the nonhomo-
geneous differential equations consists of a particular solution of the
nonhomogeneous differential equations and the general solution of the
homogeneous differential equations. In the case of an unloaded struct-
ure the solution consists of only the general solution of the homogen-
eous differential equations.

The nonhomogeneous solution of Love's equations,to a first
approximation, equals the solution of the corresponding extensional
(pure membrane) problem. The homogeneous solution is a self-cquili-
brating syste.m of stress resultants which satisfy compatibility condi-
tions at the edges of the shell (edge effect) and in other regions of dis-
continuity.

Thus, there are two extreme cases possible within the
first approximation: (1) the inextensional or pure bending case in
which middle plane strains are necglected compared with flexural
slrains, and (2) the extensional or membrane case in which only middle
plane strains are considered. The general or mixed case lies between
these two extremes.
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B7.0.2.2 Second-Order Approximation Shell Theory

In Love's second approximation, restrictions on the t/r
ratios are relaxed to such an extent that normal stresses induced hy
flexure and corresponding normal displacements are no longer negli-
gible. By considering the second-order effects of such normal dis-
placements, the strain components parallel to the middle surface be-
come nonlinear functions of middle-plane curvature changes.

Assumptions (2) and (3) of the first-order theory are re-
tained in the second approximation. Thus, displacements are said to
vary linearly across the thickness of the shell, whereas, strains are
nonlinearly distributed.

It is characteristic of second approximation theories that
strains and constitutive relations contain second-order terms in the
thickness coordinate, =z.

The theory is applicable for small deflections of highly
curved shells subjected to predominantly flexural strains.
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B7.0.2.3 Shear Deformation Shell Theories

In the development of the first-and second-order shell
theories the effects of transverse shear deformation were neglected,
This neglect resulted because of the geometrical assumptions that
normals remain normal. It is possible that for some loads or shell
configurations, the transverse shear strains can no longer be neglected
and, therefore, these effects must be included in the theory.

When the effects of shear deformation are included, the
shear strains no longer vanish and, as a result, the rotation expres--
sions are no longer determinate.

Since the shear forces are now related to deformations, they
can be eliminated from equilibrium equations. Thus, five boundary
conditions are necessary at each boundary (Reference 1).



Section B7
31 December 1968
Page 9

B7.0.2.4 Specialized Theories for Shells of Revolution

The bending shell theories previously discussed can be
simplified considerably for specialized conditions of geometry and load-
ing. Some of the simplified shell theories resulting from consideration
of shells of revolution of specific geometry will be presented in this
section. These theories are based on first-order approximation; how-
ever, for purposes of illustration they are classified separately. In
this section, the simplified shell theories are presented for shells of
particular interest, Included are the Reissner-Mcissner theories,

Geckeler's approximations, shallow-shell theory, Donnell's theory,
and others.

I. General Shells of Revolution Axisymmetrically Loaded

For the case of axisymmetrical deformation, the dis-
placement in the © direction (V) is zero, and all derivatives of displace-
ment components with respect to © are also zero. From symmetry,
the resultant forces Qg9 » Qg, and Mgg vanish. Two second-
order ordinary differential equations in the two unknown displacement
components u and W can be obtained. Rather than obtain equations in
this manner, however, a transformation of dependent variables can be -
performed leading to a more manageable pair of equations which, for
shells of constant meridional curvature and constant thickness, combine
into a single fourth-order equation solvable in terms of a hypergeometric
series. Historically, such a transformation of variables was first in-
troduced by H. Reissner (1913) for sphcrical shells and then genceralized
to all shells of constant thickness and constant meridional curvaturce by
E. Meissner {1914). Meissner ncxt showed (1915) that the equations for
a general shell of revolution are also transformable to Reissner-Meissner
type equations provided the thickness t and the radius r) both vary so as
to satisfy a certain relationship for all values of ¢, (the "Mcissner con-
dition''),

Reissner-Meissner type equations are the most conven-
ient and widely employed forms of the first-approximation theory for
axisymmetrically loaded shells of revolution. It is seen that they
follow exactly from the relations of Love's first approximation when the
meridional curvature and thickness are constant, as they are for cy-
lindrical, conical, spherical, and toroidal shells of uniform thickness.
I'urthcrmore, they follow directly from Love's cquations in the more
general case provided special restraints on the variation of thickness
and geometry are satisfied.
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Using a more recent version of the Reissner-Meissner
equations {Reference 2), toroidal shells of constant thickness were in-
vestigated by Clark (Reference 3) and ellipsoidal shells of constant
thickness by Naghdi and DeSilva (Reference 4). In the latter case, the
Meissner type condition, which would require the radius ry to be con-
stant, is obviously not satisfied. It is shown, however, that assuming
the Meissner condition to be satisfied yields a justifiable approximation
for ellipsoidal shells.

II. Spherical Shells

For axisymmetrically loaded spherical shells of con-
stant thickness, two simplified versions of the Reissner-Meissner
equations are of engineering interest, namely Geckeler's approxima-
tion for nonshallow spherical shells and the Esslinger approximation
for shallow shells,

For axisymmetrically loaded spherical shells of constant thickness,

the fourth-order differential equation is:

a4 3q 2

d(:jd) t A3 dd:f + Ay dd;cP +4, d:)‘*’ +A,Q,+4 Nt =0
where

Aoz 1-3 csc4¢>- o2

A) = cot $(2+3 cscle)

Ay = 1-3 csc?o

A3= 2 cot ¢
and

vt 3(1-u2)R2

2
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In the Geckeler approximation all terms except the first
and last in the equation above are neglected, leaving:

Geckeler's equation is seen to be of the same form as the equation for
the beam on an elastic foundation,

This approximation is valid for large values of X\ and
high angles ¢; that is, for thin, non-shallow spherical shells, The
approximation is particularly good in the vicinity of ¢ = 90°, however,
it is considered to be sufficiently accurate for angles as small as ¢ =20°,

For small angles ¢, the Reissner-Meissner equations
can be approximated by making the usual low angle assumption that sin
¢=¢ and cos ¢ =1, a simplification considered in detail by Esslinger.

The solution of these equations is in terms of derivatives of Schleicher
functions.

Another approximation for non-shallow shells is based
on the transformation:

C_)¢ =Q¢ sin ¢

This involves a slightly more accurate approximation than Geckeler's,
and was introduced by O. Blumenthal. Complete solutions were given
by Hetényi (Reference 5). ‘

III. Circular Cylindrical Shells

For the case of circular cylindrical shells arbitrarily
loaded, two first approximate theories are of prime importance: Love's
first-approximation theory, and its simplified version due to Donnell,

Donnell simplificd the strain displacement relations by
ignoring the influence of the original shell curvature on the deformations
due to bending and twisting moment. By this approximation the relations
between moments and change in curvature and twist become the same as
for flat plates.

Donnell’'s equations are specially applicable to shell
stability problems (Reference 6 and section on shell stability), however,
in their homogeneous form they have been widely used for problems of
circular cylinders under line loads, concentrated loads, and arbitrary
cdge loads. A review of such solutions is presented in Refercnce 7.
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IV. Second-Order Approximation Theories for Shells of
Revolution

The second-order approximation theory of Fligge (Ref-
erence 8) and Byrne (Reference 9) retain the z/r terms with respect to
unity in the’ stress resultant equations and in the strain-displacement
relations. Fliigge - Byrne type equations for a general shell arc dis-
cussed by Kempner (Reference 10) who obtains them as a special case
of a unified thin-shell theory. Applications of this second approxima-
tion theory have generally been restricted to circular cylindrical shapes,
for which case solutions are obtained in References9 and 11. In the
latter reference the Fliigge - Byrne type equations are considered as
standards with which simplified first-approximation theories are
compared,

Second-approximation equations are derived by Vlasov
directly from the general three-dimensional Linear Elasticity equations
for a thick shell (Reference 12). An excellent discussion of the assump-
tions made by Vlasov is given by Novozhilov (Reference 13).

V. Membrane Theory of Shells

The shell theories studied in the previous sections are
generally referred to as "bending' theories of shells because this
development includes the consideration of the flexural behavior of shells,
If, in the study of equilibrium of a shell all moment expressions are
neglected, the resulting theory is the so-called "membrane' theory of
shells. Membrane analysis of shells is presented in Scction B7. 1.
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B7.0.3 Nonlinear Shell Theory

The small-deflection field theories discussed in the previous
sections were formulated from the classical linear theory of elasticity.
It is known that these operations, which are based on Hooke's Law and
the omission of nonlinear terms both in the equations for strain compo-
nents and the equilibrium equations, have a unique solution in every
case. In other words, linear shell theory determines a unique position
of equilibrium for every shell with prescribed load and constraints.

In reality, however, the solution of a physical shell problem
is not always unique. A shell under identical conditions of loading and
constraints may have several possible positions of equilibrium. The
incorrect inference to which linear shell theory leads can be explained
by the approximations introduced in the development of the shell equa-
tions. In this development, rotations were neglected in the expressions
for strains and equilibrium in order that the equations could be lineariz-
ed. It is essential in the investigation of the multiple-equilibrium states
of a shell to include these rotation terms.

A theory of shells that is free of this hypothesis can be
thought of as being '"geometrically nonlinear' and requires formulation
on the basis of the nonlinear elasticity theory. Additionally, the shell
may be ''physically nonlinear' with respect to the stress-strain relations.
This latter type of nonlinearity forms the basis of inelastic shell theory
and will not be discussed here.

The development of nonlinear shell theory is based on a
general mathematical approach described by Novozhilov (Reference 14)
for problems of nonlinear elasticity. Starting with the general strain-
displacement relations, approximate nonlinear strain-displacement
rclations and equilibrium equations are derived by the introduction of
appropriate simplifying assumptions. The cquilibrium equations are
obtained upon application of the principle of stationary potential energy.

Theories based on nonlinear elasticity are required in analyz-
ing the so-called "large" deformation of shells. '"Large" or finite de-
flection shell theories form the basis for the investigation of the stability
of shells. In the case of stability, the effects of deformation on equilibrium
cannot be ignored. The stability of shells will be considered in greater
detail in Section C3.0.
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