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qug,o BEAM~COLUMNS
| B4.6.1 Introduction

Beam-columns are structural members which are subjected simultan-
eously to axial and bending loads. The bending may arise from transverse
loads, couples applied at any point on the beam, surface shear loads, or
from end moments resulting from eccentricity of the axial load at one end
(or at both ends) of the member.

There are many problems assoclated with the analysis of beam-
columns, For example, individual beam and column effects cannot be
superimposed since they are interdependent., Initial curvature, distor-
tion, inelastic effects, and restraint conditions all affect the deform~
ational characteristics and are important factors. Both strength and
overall instability need to be considered., In cases where lateral support
is lacking, lateral instability (torsional instability) must be considered.
If the elements of the section are relatively thin, and the beam-column
is relatively short, local buckling or crippling may occur.

The analysis of shear-web beams is distinctly different from the
analysis of'simple beams, As a consequence, the effects of axial loads
on shear-web beams are beyond the scope of this gsection; they are, how-
ever, considered in the section on shear beams.

It has been shown that beam-columns can have one: of three types of
overall response (Rgferences 1 and 2), These are shown in Figure 1 as
indicated below:

(a) In-Plane Response
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(a)  IN-PLANE RESPONSE

(b) BIAXIAL IN-PLANE RESPONSE

{c} COMBINED BENDING AND TWISTING RESPONSE

FIGURE 1. BEAM-COLUMN RESPONSES
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(b) Biaxial In-Plane Response

(c) Combined Bending and Twisting Response

The particular response for a given member is dependent maialy

upon five conditions. These are:

(a) Cross Section Shape

(b) Span Length

(c) Amount of Intermediate Lateral (Torsional) Support

(d) Restraint Conditions at Boundaries

(e) Loading
The analysis procedures employed for these responses will be discussed
in the followlng paragraphs.

In general, the analysis and design procedures for beam-columns
with in-plane response are well developed for both the elastic and in-
elastic stress ranges. However, procedures for biaxial in-plane response
and combined bending and twisting response are limited, especially in the
inelastic stress range.

One of the more powerful techniques employed in the analysis of
beam~columns is referred to as "interaction equations;' these equations
are based on experimental data, and they require that the strength of
the member as a column and the strength as a beam be determined separately.
These strengths are then expressed in terms of stress ratios (applied
load/strength) and incorporated in the interaction equation which ex-
presses the effects of the combined loading., Interaction equations will

be used in the following discussion,
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Area of Cross Section (in.z)

Torsion Warping Constant (in.6)
Eccentricity (in.)

Modulus of Elasticity (lbs/in.z)

Tangent Modulus of Elasticity (lbs/in.z)
Stress (lbs/in.z)

Nominal Extreme Fiber Stress at Lateral
Buckling (1lbs/in.2)

Elastic Shear Modulus (lbs/in.2)
Distance between Centers of Flanges (in.)
Moment of Inertia (in.é)

Moment of Inertia about Minor Axis (in.4)
Uniform Torsion Constant (in.a)

%l (see Tables 1, 2, and 3)

Length of Member (in.)

Effective Length (in.)

Bending Moment (in.-1b)

Principal Axes Bending Moments (in.-1b)

Bending Moment due to Both Bending and Axial
Loads (in.-1b)

Bending Moment at the Elastic Stress Limit or
Yield Point (in.-1b)

Bending Moment at the Inelastic Stress Limit
(in.-1b)
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Applied Moments at Each End of Beam~Column
Loaded with Unequal End Moments (in,-1b)

Equivalent Moment for Beam-Column Loaded

with Unequal End Moments (in.-1b)
Margin of Safety

Applied Axial Load (1bs)

Critical Column Buckling Load in the Elastic

Stress Range (Euler Load);

= (n2 '
Pe = (BT, (L')?

Critical Column Buckling Loads in the
Elastic Stress Range for Each Principal

Axis (1bs)

Critical Column Buckling Load in the Inelastic

Stress Range (1bs)
L/j (see Tables 1, 2, and 3)

Transverse Load (1b)

Transverse Unit Load (lb per linear in.)

Deflection (in.)

Section Moduli about Principal Axes (in.3)

Slope of Beam (radians) to Horizontal, Positive

when Upward to the Right



Section B4,6
February 15,
Page 6

B4.6,3 In-Plane Response

In-plane response, as mentioned herein, refers to beam-columns
which, when subjected to combined axial and bending loads acting in one
plane, respond substantially without twisting in the same plane, as shown
in Figure la. This response usually occurs when adequate lateral (tor-
sional) support is provided, or when torsionally stiff sections are used.
Beam-columns which respond in this manner have been investigated exten-
sively for both the elastic stress range and the inelastic stress range;

these are discussed separately below.

B4,6,3.1 Elastic Analysis

The elastic analysis for the strength of beam-columns is based on
the assumption that failure occurs when the computed value of the com-
bined axial and bending stress in the most highly stressed fiber reaches
the yleld point or yield strength of the material. This definition, in
a sense, does not consider the danger of buckling; as such, it is not
correct in the limiting case of a pure column. Initial imperfections are
always present, and contribute to the response. Thus, if these imper-
fections are considered, the definition above remains valid, Further
discussion of this concept is given by Massonnet (Ref. 2).
Bu,eigiz_lnelastic Analysis

?he maximum bending strength of a beam actually is higher than the
hypothetical elastic limit strength, As the applied bending moment in-
creases above the yield moment, ylelding penetrates into the cross section

as shown in Figure 2. By comparison of Figures 2b and 2d, it can be seen

1976
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that a greater strength is obtained by considering the inelastic stress
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distribution. Analysis procedures which utilize this extra, or reserve,

strength are known as inelastic analyses; this extra strength has been

shown to vary, and to depend on three factors (Ref. 2).

(a)

(b)

(c)

The Mﬁéx/P Ratio - The reserve strength is almost zero for
the case of pure buckling (M = 0) and tends, as Mﬁax/P
increases, toward the value that 1s assoclated with pure
bending.

The Shape of the Cross Section - For example, the reserve
strength is smaller for an I-gection than it is for a
rectangular section,

The Nature of the Metal - For example, the reserve strength
is much higher for material A than it is for material B in
Figure 3. (The stress-strain diagram for material A does not

have a flat portion, as does the diagram for material B),

Several failure criteria have been used in the inelastic analysis

for the strength of beam-columns (Refs., 3, 4, 5, and 6). Basically, the

criterion used has been one of the following:

(a) Maximum Stress Criterion - Fallure occurs at some prescribed

maximum stress level in the inelastic range.

(b) Maximum Strain Criterion - Failure occurs at some prescribed

(c)

maximum strain level in the inelastic range.
Ultimate Load Criterion - Failure occurs at some ultimate, or
collapse, load which utilizes the inelastic behavior of the

material,
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B4, 6,4 Biaxial In-Plane Response

This section considers the strength analysis methods of torsionally
stiff beam~columns which are subjected to applied bending forces that
cause either bending about the major principal axis only or bending
about both principal axes (Fig. 1b). The beam-columns are free to deflect
in all directions, without twisting. This type of response can occur as
a result of one of the following two conditions:

(a) Primary Biaxial Bending
(b) Primary Bending in the Strong Direction
Case 1 1is discussed in the following paragraphs.

Little information is available for Case 2. However, it has been
predicted that short members with large bending forces will respond
essentially in the plane of the applied forces and develop as much
strength as if they were restrained From deflecting in the weak direction.
On the other hand, long slender members with small bending forces buckle
in a direction normal to the plane of the bending forces and develop
essentially the strength of the member loaded concentrically, that is,
the bending forces cause no loss of strength. Intermediate length mem-
bers may respond about both principal axes simultaneously, and the
strength will then be less than the strength for responding exclusively
in one direction or the other.

B4.6.4,1 Elastic Analysis

In the elastic range, when the limiting stress failure criterion is
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used, the determination of the stresses due to bending about the fﬁo
principal axes can be made independently, as there is no couplin;.of the
flexural actions. Thus, although few test data are available, practical
procedures for the prediction of strength for such cases are based on a
knowledge of in-plane response. Hence, elastic solutions for the case
of in-plane response can be extended to include biaxial in-plane response;
but it has been found (Ref. 1) that the limiting stress criterion is even
more conservative for cases of response about both axes than it is for
cases of response about ome axis. Austin (Ref. 1) extended one form of the
interaction equation for in-plane response to include biaxial in-plane
response.
B4,6.4.2 Inelastic Analysis

Augtin (1) states that there have been no precise theoretical studies
based on the von Karman theory of the strength of beam-columns which fail
by bending about both principal axes without twisting. From a practical
viewpoint, Austin has extended one form of the interaction equation for
in-plane response to biaxlal in-plane response for the inelastic range.
Little test information is available for this phenomenon. In general,
it appears that methods used to predict the inelastic in-plane response,
can be extended to predict the inelastic biaxlal in-plane response.

B4,6.5 Combined Bending and Twisting Response

Structural members of thin-walled open cross section, when subjected
to combined axial and bending forces, may respond by combined bending and

twisting (Figure 1lc). This phenomenon is commonly called torsional-
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flexurallbu;kling or buckling by torsion-bending. The twisting action 1ia

a result of the low torsional stiffness of members with open cross section
such as I, channel or angle. It should be noted that in the discussion
which follows it is assumed that the open section members are not subjected
to directly applied torsional couples, such as arise when the line of ac-
tion of transverse loading does not pass through the shear ceater (Figure

4). The shear center is defined as the point through which the shear

force must pass if the member is to bend without twisting.

CENTROID —\ /— SHEAR CENTER

—— o0

c—]

FIGURE 4. SHEAR CENTER

Columns of open cross section will respond by combined bending and
twisting under any of the following three conditions:
(a) Axial compression and moments acting to cause bending about
both principal axes;

(b) Axial compression and moments acting to cause bending only
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about the major principal akis when the moment of inertia
aBout the major axis is much greater than about the minor
axis; for example, an I-section member with axial compression
and end moments acting to cause bending in the plane of the
web; and
(c) Axial compression and moments acting to cause bending in a
plane parallel to the plane of either principal axis, when the
principal axis does not contain the shear center as well as the
centroid, as may occur for a channel, tee, or an angle section.
Little information is avail->le on the strength and behavior of mem-
bers subjected to the first and third conditions (Ref. 1). The greatest amount
of study has been devoted to the second case, primarily for I-gsection members
'(Re;s. 4, 6, 7, 8, 9, 10,and 11), The second case is discussed in the follow-

ing paragraphs.

B4.6.5.1 Elastic Analysis

As mentioned above, most of the elastic analyses for beam-columns
subjected to combined bending and twisting have been limited to uniform
I-section members. It has been found that the behavior is similar to
the lateral buckling action of an I-beam subjected to transverse forces
only., However, exact formulas for critical loads for torsional-flexural
buckling are complex (Refs., &, 6, and 11), therefore, interaction equations
have been used. These interaction equations have been shown to agree
closely with avallable data. An interaction equation has been proposed
by Hill, Hartman, and Clark (Ref. 10) for aluminum beam-columns; this equation

has been verified by Massomnet (Ref. 2) for steel beam columns,
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In a theoretical study, Salvadori (Ref. 12) found that the interaction
equation used by Hill, Hartman, and Clark gave safe predictions for the
combinations of axial compression and bending which produce elastic
‘buckling by torsion—bénding. Salvadori congsidered members whose ends
were free to rotate in the plane of the web, but were elastically restrain-
ed with respect to rotation in the planes of the flanges.

Little analytical work has been done on the elastic resﬁonse of
tapered members under combined bending and axial load. However, Butler
and Anderson (Ref, 13) have performed tests on tapered steel beam-columns,
and compared the test regsults to Salvadori's interaction curves.

The outcome of the comparison suggests that Salvadori's curves can be
applied to tapered as well as uniform beam-columns. Also, analytical
studies of "so0lid" tapered members have been made by Gatewood Ref. 14),
and the interaction curves obtained are essentially independent of the
degree of taper and are closely approximated by the results of Salvadori.
B4.6,5,2 Inelastic Analysis

Again, the majority of studies in the inelastic range have been
devoted to I-section members. Hill and Clark (Ref. 9) have shown that the
interaction equation used in elastic analysis can also be extended for
use in the inelastic range by using the tangent modulus concept.
nassonet has also extended the elastic interaction equation for steel
into the plastic domain. The results of this extension were compared

with results of their tests of steel I-section columns and found to be
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in excellent agreement for oblique eccentric loading, moment at one end

only, and equal and opposite end moments (Ref. 1), Galambos (Ref. 15) presents
a thorough study of the inelastic lateral buckling of beams which may be
applied in the interaction equation.

B Bh.6t§7Recommended Practices

Detailed and comprehensive stress analysis shall be performed to
ensure efficiency and integrity of the member or structure; and the design
shall comply with the particular structure or vehicle requirements, e.g.,
reliability. 1In general, the methods of analysis shall follow those
given herein., 1In utilizing these methods, minimum weight designs shall
be given prime consideration and the member shall be so designed that

(a) There shall occur no instabilities resulting in collapse of
the member from the application of the design loads; and

{(b) Deformations resulting from limit loads shall not be so
large as to impair the function of the member or nearby
components, or so large as to produce undesirable changes in
the loading distribution.

The immediate problem in the design of a beam-column 1s the choice
of a suitable cross section to withstand the combined axial and bending
loads., Because of the number of variables, direct choice of section is
not usually feasible, except for the selection of a shape, such as round,
rectangular, I-section, etc. Thus, in general, successive trials must
be made to determine the safest and most economical section. The pre-

liminary selection of the cross section at any station along the member
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may, in many cases, be based on the elementary formula for stress

M
Py x, My
f—xizx:l:zy, (1)

where the interaction-of the transverse and axial loads is neglected.
Naturally, this selection must be improved by a refined analysis.

In choosing an optimum shape, particular attention should be given
to the degree of lateral restraint or end restraint which will or can
be provided. For example, 1if little or no lateral restraint is provided,
then a torsionally stiff section such as a box or tubular section should
be used., Also, when the type of response is not known, all three con-
ditions

(a) In-plane response

{(b) Biaxial in-plane response

(c) Combined bending and twisting response
should be analyzed to determine the critical response,.

If the analyst or designer has the chbice of elastic or inelastic
analysis procedures, the following factors should be considered in making
the choice.

(a) Member function

(b) Material

(¢) Deflection limitations -~ Deflections may be excessive in the
inelastic range

(d) Thermal conditions - Little information is available dn

thermal effects in the inelastic range
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(e) Dynamic conditions - Little information is available for in-

elastic effects due to dynamic loadings

(f) Reliability

(g) Analysis procedures available for the method of analysis and

types of loadings considered.

The recommended practices and procedures for the analysis of beam-
columng are discussed in the paragraphs which follow. The analysis and
design for local buckling and crippling should be in accordance with the
methods presented in Section Cl. In complying with the references and

recommendations cited above, the designer should keep abreast of current

structural research and development. With this approach, optimum methods
and designs should be achieved.
BL4,6,6,1 In-Plane Response

BL4,6,6,1.1 Elastic Analysis

Tengsile Axial Loads - The strength of beam-columns subjected to

combined flexure and tensile axial loads has been investigated for many

commonly encountered cases. In Tables B4,6,1 and B4,6,3 results are
‘tabulated for some of these cases; In general, adequate solutions and
methods of analysis for other beam~-column loading conditions are avail-
able in several references (16, 17, 18, 19 and 20).

Compressive Axial Loads - Many exact solutions have been ob-

tained for the case of beam-columns subjected to combined flexure and
compressive axial loads.” Results are given in Tables 2 and 3 for some
of the more commonly encountered conditions. A number of these and other

conditions are discussed below.
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Beam columns with intermediate supports have been investigated.
Probably the three moment equations (Refs. 11, 18, 20,and 21) are the most
powerful method of analysis for this case, A variety of conditions is
covered in this technique; f&r example:

(a) Any type of transverse loads can be included

(b) Span lengths may vary

(c) The moment of inertia may vary from span to span

(d) The effects of rigid supports not in a straight line

(e) The effects of intermediate spring supports (Ref. 11 p. 23)

(f) The effects of uniformly distributed axial loads (Ref. 21).
Niles and Newell (Ref. 18) present tabulated results for many of the cases
listed above. Another amnalytical method which can be used for this
problem consists of a solution adapted to matrix form. Saunders (Refs. 22,
23) demonstrates the application of the "transfer matrix" technique to '
the analysis of nonuniform beam-columns on multi-supports.

Methods and solutions for beam-columns on an elastic foundation can
be found in several references (6, 17, 24,and 25), Hetényli (Ref. 17) is a
particularly good source for formulation and solution of the differential
"equations for this problem. He considers both axial tensile and axial
compressive loads. See Table B.4.6.3 for illustrations of some of these cases.

For the cases of tapered and stepped members, numerical methods have
been shown to give good results with a savings in time and labor., Newmark's
method (Ref., 26) is particularly applicable to beam-columrs of variable

cross section and can be extended to include many commonly encountered
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loading conditions. Basically, the method is a numerical integration by

a sequence of successive approximations., Salvadori, Baron (Ref. 27) define
finite difference numerical methods which can be used for the analysis

of beam-columns with many loading conditions.

Other conditions not covered in Tables B.4.6.2 and B.4.6.3 can be
found in references (4, 11, 16, 18, 19, 26, 28, 29, and 30). The ana-
lytical methods which can be adapted to the solution of problems which
have not been investigated are available in several references (4, 11,
16, 18, 19, 20, 26, and 29).

The abundance of exact solutions and methods of solution for the
elastic analysis of beam-columns which respond in-plane reduces the need
for using interaction equations. However, the interaction equation
can be, and is,used in many instances. The following simple straight

line equation is the basis for several interaction equations,

M
P 4+ -Actual _ 1. (2)
Pe Me

Since Mgt a1 is the moment resulting from both the axial and trans-
verse loads, it can be difficult to obtain for complicated conditions.
However, for members which satisfy all of the following requirements:
(a) Must be simply supported
(b) Must have uniform cross section
(c) May be subjected to any combination of bending forces producing
maximum moment at or near the center of the span

it has been shown (Refs. 1, 2, 10, and 31) that a good approximation of the
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actual bending moment is given by
M
_ X
Mactual =T - P/(Py)e (3)

Here (Py)e is the Euler elastic critical load in the plane of the
applied moment and Mx 18 the maximum moment, not considering the moment
due to the axial load interacting with the deflections. For the con-
dition of moment due to interaction of the axial load with deflection,

Eq. (2) becomes

M

P X
+ =1 (4)
Pe Me {1 - P/(Px)e}
and the corresponding margin of safety is given by
M.S - 1 (5)
L] . M L

L X '
P,  (My)e {1 - P/(Px)e}

For eccentrically loaded members, where d is the eccentricity, equal

at both ends, Eq. (2) takes the following form

P Pd - '
P, * M), {1 - P/(PY ] =L (6)

The margin of safety for this case can be determined analogously to
Eq. (5).
The interaction equation may be written in terms of an equivalent

moment, M for a beam-column subjected to unequal end moments as shown

eq’
in Figure 5.
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M My
P ) P
77
FIGURE 5. UNEQUAL END MOMENTS
Equation (2) becomes
M
Pt = =1 )
e Me {1 - P/(Pp)e )}
where a good approximation for Meq as given by Austin (1) is
M ) )
—d =0.6+0.4 £ for 1,0>_-%£> - 0,5 (8)
My M M,
and
M MZ
—=4 - 0,4 for -0.5 2 =2 -1,0. 9)
My M1

Accurate interaction formulas which are simple and general have not
been developed for beam-columns with other than simple supports; for
example, cases where each end can be free, hinged, fixed,or elastically
restrained both with respect to rotation and translation, However, it
is conservative to use Eq. (4) with M, = (Mx)max’ where (Mx)max is the

maximum moment in the member and is determined by an ordinary structural

analysis without regard to the effects of axial load., 1In utilizing this
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method, the effective length concept should be employed in determining the

Euler load.,

 BA4,6.6.1.2 Inelastic Analysis

A practical interaction formula for predicting the strength of
metal beam-columns under combined compressive axial loads and bending,

which respond in-plane and in the inelastic region, has been shown (Refs.
1, 2, 7, 10,and 31) to be

My

N + ), {I'P/(Px)e} =1, (10)

"Ul"d

where P is the strength of the member as a column in the inelastic
range. The value of P, can be found by the tangent modulus method (Refs. &
11), Johnson's modified parabolas (Refs. 29, 31), or by methods presented in
the section on columns. As before, Mx is the moment due to transverse
bending without the axial load, and (M.x)u is the ultimate moment which
the section can inelastically withstand. In determining the ultimate
moment, (Mx)u' for the interaction equation above, one of the three
methods presented in paragraph 4.4.3.2,

(a) Trapezoidal Stress Distribution

(b) Plastic Design

{(¢) Double Elastic Moduli
can be used. The trapezoidal stress distribution method developed by Coz-
zone (Refs. 5, 29) is widely used in the aerospace industry in structural
design. It is especially adaptable to metals which behave like aluminum

alloys. In general, the trapezoidal stress distribution method will be
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preferable; however, there are certain cases where one of the other meth-
ods may prove superior, TFor example, the plastic design method (Refs. 3,
16 and 32) has been primarily developed for steels.

Obviously, interaction equation 10 is an extension of the one
presented in the previous section (Eq. 4). As a consequence, it is sub-
ject to the same limitations, i.e., simple supports, uniform sections, and
equal end-moments. However, for beam-columns with unequal end-moments
(Fig. 10), the equivalent moment (Meq) as defined by equations 8 and 9
may be substituted for M_ in equation 10. Additional investigation is
required to determine the limits of applicability of this interaction
equation for other boundary and loading conditions.

In employing the inelastic method, excessive deflections may occur.
In general, except for the case of glastic design, there are few or
no methods for calculating the resulting deflections. Thus, if there is
a prespecified deflection limitation the inelastic method may not be
adequate,

Inelastic analysis procedures for combined tensile axial loads and
bending have not been developed., However, previous elastic analytical
methods can probably be extended to cover inelastic behavior,

B4,6,6,2 Biaxial In-Plane Response

Beam-columns which are torsionally stiff and free to deflect in
all directions may have a biaxial in-plane response condition (Fig. 1)
resulting from either of two loading conditions. These two conditions

consist of compressive axial load and
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'(a) Primary Bending in the Strong Direction; or
(b) Biaxial Bending.
¥or case 1, primary bending in the strong direction, the member is
always designed so that it will have only in-plane response in the strong
direction. This is accomplished by checking the buckling value for the
weak direction, and, if necessary providing adequate intermediate supports
or stiffness for that direction. For the condition where a Biaxial inplane
response does occur, Austin (Ref. 1) and Massonnet (Ref, 2) both provide an
excellent discussion.,
It can be seen that only biaxial in-plane response for case 2 is
of primary practical interest. Thereforb, it is discussed in the follow-

ing paragraphs,
B4,6.6,2,1 Elastic Analysis

"The determination of the stresses due to bending about the two
principal axes can be made independently as there is no coupling of the
flexural actions in the elastic range" (Ref., 1). Thus, solutions for elastic
in-plane response problems (Paragraph 4.4.6.1.1) can be extended to in-
clude bending about both principal axes by simple superposition of results.

For beam-columns which are subjected to axial compression and bend-
ing moments about both principal axes, Austin has also stated that the
interaction equation for in-plane response, Equation 4, can be modified to
take into account the biaxial loading. Thus Equation 4 becomes

2, x . My
Pe M), {1-P/(RY),} M), {1 - P/, }

=1, (11)
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Equation 11 is subject to the same restrictions as Equation 4., Also,
the c-~uivalent moment concept as discussed in Paragraph 4.4.6.1.1 can be
utilized for unequal end moments,
BL4,6,6,2,2 Inelastic Analysis
R The recommended procedure for inelastic analysis is an extension
of the interaction equation from in-plane response to include biaxial in-

plane response. Equation 10 then is

P M, 4y

+ + =
Py ), {1 - P/(R, } (M) {1 - P/(Py)}

1. (12)

Using this interaction equation, the same restrictions discussed
in Paragraph 4.4.6,1.2 will also apply here.

4.,4,6,3 Combined Bending and Twisting Response

The methods summarized in the preceding sections are applicable to
problems of in-plane response, and should be applied only to beam-columns
which are restrained against twisting by adequate bracing or to beam-
columns which possess a high torsional rigidity.

A torsionally weak beam-column of open section such as the wide-
flange, tee, or angle is apt to twist as well as bend during the response.
The various possibilities whereln twist may be involved are summarized as
follows:

(8) If the shear center axis and centroidal axis are not co-
incident, the member may respond by a combination of
twisting and bending, with the tendency toward twist

failure increasing for wvery thin-walled, torsionally
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weak, short column secticns.

(b) If the shear center axis and the centroidal axis are co-
incident, as in the case of the I- or Z- shapes, buckling
by pure twist may occur without bending.

The recommended formulae given herein for both elastic and inelas-
tic analysis are in the form of interaction equations and are applicable
only to cases with bending in the strong direction. These equations have
a simple form, are convenient to use, are accurate, and bave a wide scope
of application, If a theoretical solution is uesired, References 4, 6,
and 11 contain analytical investigations of torsional-flexural response for
many common sections and loadings. However, most of the work has been
done for axial compression and moments acting to cause only bending about
the major principal axis when the moment of inertia about the major axis
is much greater than about the minor axis (e.g., I-section). It has been
proposed by Austin that the interaction equations can be extended to
‘nclude primary bending about both axes. However, there are few data,

experimental or analytical, available to verify this,

B4.6,6,3.1 Elastic Analysis

For the elastic analysis of doubly symmetric I-section members
subjected to primary bending in the plane of the web the following inter-

action equation is recommended:

M
Loy S - 1. (13)
P, fop 2y {1 - P/(P)), }
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The value of f_, is the nominal extreme fiber stress at lateral buckling
for a member subjected to a uniform moment causing bending in the plane

of the web. The value of £, is given by

2 2
= 1+

f
b 2 ‘
¢ 2Z L T2ET (14)

A complete study of this lateral buckling is given by Clark and Hill in
Reference 8.

When the maximum moment is not at or near the center of the span,
the interaction equation may be excessively conservative. This is par-
ticularly true when end moments are of opposite sign and the maximum end
moment is used for Mx‘ However, the interaction equation cited above can
be used if an equivalent uniform moment is calculated and substituted for
My. The recommended expression for the determination of the equivalent

uniform moment as given by Massonnet (Ref. 2) is

_ 2 2
Méq = \/0.3 (Ml) + (M2) + 0.4 MM, . (15)
Massonnet also states that the interaction equation i3 not necess-
arily limited to doubly symmetric I-shaped sections, but can be used for
all shapes provided that the proper effective lengths, equivalent moments,

and appropriate expressions for fc are adopted. However, these exten-

b
sions should be applied with discretion, as little work has been done to
support this,

Relatively few studies have been conducted on the elastic stability

of nonuniform or tapered beam columns which fail by combined bending and

twisting., Butler, Anderson (Ref. 13), and Gatewood (Ref. 14) have investigated
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tapered members, and their results indicate that the previous interaction
equation may be used, However, additional tests under a variety of load-
ing conditions will be neces;ary to establish this possibility conclusive~ .
ly.
B4,6,6.3.2 lnelastic Analysis

It has been predicted by various sources (Refs. 1, 2, 10 and 31) that
the interaction equation recommended for elastic analysis will also be
adequate for inelastic analysis provided that the tangent modulus is

used. For this case, Equation 14 becomes

2
EIh 2

fcb =_1_...t._.§..._ 1 4+ KGL . (16)
ZZxL an[‘

and the assoclated interaction equation is

Mx =1,

£.p Zx (L= P/(Po} (17)

L
Pu

Galambos (Ref, 15) should be consulted for further study of the in-

elastic lateral buckling value to be used in the interaction equation.



COMBINED LOADING - TENSION FLEXURE BEAMS

Notation: M = bending moment (in.-1b) due to the combined loading, positive when clockwise, negative
when counterclockwise; M) and M are applied external couples (in.-1b.) positive when acting as

shown; Y = deflection (in.), positive when upward, negative when downward; 8 = slope of beam

(radians) to horizontal, positive when upward to the right; j = ‘V%_I where E = modulus of elasticity,
1 = moment of inertia (in.%) of cross section about the horizontal central axis, P = axial load (1b.);
U=L/}; W= transverse load (lb.); w = transverse unit load (lb. per linear in.). All dimensions are
in inches, all forces in pounds, all angles in radians.

Manner of loading and support Formulas for maximum bending moment, maximum deflection, end slope,
and constraining moments

A
1Yy
Iw F Max M = -« W§j tanh U at x =1L
" v
B3 2 MaxY=-F(L-jt:anhU)atx=0
| L
B.
y
) Max M = - wj [L tanh U - j (1 - sech Uﬂ at x = L
wifITTIiRsdbaeiy 2
[ = ;""" MaxY=-g'1[J(1'g——sechID-L(tanhU-U) at x - 1
y
P l-—-—L-——'*

67 9bey
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‘Table B.L.6,1-2

COMBINED LOADING ~ TENSION FLEXbRE BEAMS

 Manner of loading and support

Formulas for maximum bending moment, maximum deflection,

end slope, and constraining moments.
c.
y 1 U L
L—'l:_"w MaxH=5thanh-2-atx-—5
2
s
= ¥fL 1 v =L
P P MaxY-—-P(a-ztanhz) at x = 3
L
D.

Max M = wr(j)2 1 - sech %)

2
Max Y=-!'I; [;‘—-- (j)2 (l-sech%)]

0§ obed
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|Table B.4.6.1-3
COMBINED LOADING - TENSION FLEXURE BEAMS

Manner of loading and support

and constraining moments.

Formulas for maximum bending moment, maximum deflection, end slope,

E.
cosh
u-u-J( )
sinh -
y - cosh v
Max'i"M“'*i( 2 +tanh%)atx=%
sinh 5 cosh 3
( )’
1 - cosh &
Max\’=-‘—q‘1 y--tanhg* 2
2P 2 2 U U
sinh 7 cosh 2
Fl

=
il
=
]

- tanhg'
1 9 w(3) ( )

tanh -

Max + M = w(])? (1 7 U) at:x=-g-
sinh

4u (1 - cosh -—)
Max Y = - (J) [ +U2] at x =
sinh -

N

1¢ obeg
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Table B.4,6,2~]1 Beam Column Formulas

Notation: M = bending moment (in.-1b.) due to the combined loading, positive when clockwise, negative
when counterclockwise; M; and Mj are applied external couples (in.-1b.) positive when acting as

shown; Y = deflection (in.), positive when upward, negative when downward; 8 = slope of beam

(radians) to horizontal, positive when upward to the right; j =4/ EL where E = modulus of elasticity,
I = moment of inertia (in.%) of cross section about the horizontal central axis, P = axial load (lb.);
U =L/j; W = transverse load (lb.); w = transverse unit load (lb. per linear in.). All dimensions are
in inches, all forces in pounds, all angles in radians,
Manner of loading and Formulas for maximum bending moment, maximum deflection, end slope,
support and constraining moments

1. Max M = -Wjtan U at x =L

MaxY=-%(j tan U - L) atx =0

6= ( 1l -cos U ) at x = 0
cos U

¥

\
I
|

2,
'y Max M = - wj [i(l-sec U) + L tan U] at x = L
. 2 -
wt;‘/,’__}}}H_LHHMZ__x Max Y = __‘_;J_"j (1 +—§-U2 - sec U> + L (tan U-U)Jat x =0
v
F"1 /4 )
| ang L g = A L . :f{_1 = cos 2U
P cos U ] sin 2 U

7¢ 9bed
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Table B.4.6.2-2 Beam Column Formulas

Manner of loading and

Formulas for maximum bending moment, maximum deflection, end slope,

support and constraining moments
3.
D S U ap x =L
L,_ Max M = > W_]t:an.._z_ at x >
Yy W
2 L Wj U U L
=-—H.l—. — - —— at X & ——
g o x| Max ¥ 2 p (}a“ 2 2 ) 2
] =
L o = - U;P (1-cto}s2> at x = 0
COST
4,
U L
ly Max M = w (_1)2 (sec—z—- ) at x = 5
()2 U U2
o LT | v = - 200 (sec Do 1 - ¥ ae x =
SM~—_ A P 2 8 )
l-—————L——-I o = wi | _ 1 1l - cos U at x = 0
P 2 sin U

¢¢ abey
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_Table B,4,6,2-3 Beam Column Formulas

Manner of loading and
support

Formulas for maximum bending moment, maximum deflection, end slope
and constraining moments

Wjsin h sin =
Moment equation: x =0 to x = a: M 1 1

|

sin U
MaxMatx=—12U-if’% < a
. . 4a . L-x
Wj sin T~ sin ——
Moment equation: x =a tox =L: M = . 1
sin U

" .
MaxMatx=L-—2‘lifG.--—T2El>>a

MaxMisatx=aif—’2r'l>aandG..-—ﬂ-D<a

Wi sin % sin }Ec- bx
Deflecti ion: = = = - =22
eflection equation: x =0tox =a: Y §J< sin U i )

Wi sin & sin L-_x (L-x)
Deflection equation: x =a tox =L: Y = J. 1l .2 X

P sin U Lj

g = H(E_’_Sﬁlj a) —
= - P\1L tanU-cos-J-.- at x =0
sini
8 = L 2——.-1 at x = L

]

¢ beg
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‘Table B,4,6,2-4 Beam Column Formulas

Manner of loading and Formulas for maximum bending moment, maximum dcflection, end slope,
support and constraining moments.

6

Y

w=§'m Moment equation: x =0 tox =L; M=w (j)2 (iir-l—:l- - E)
Mmﬂw sin U -
_;AUAT Max M at x = j arc cos (ii%g-)
L ‘——‘l 2 sin®

3 . .
Deflection equation: =x=0 to x=L; y = = % <}6{_L + Q)——J_sin 7 - I]JE - %)

L w (3 _1.L _ w1 .1 L -
8 = P ( >atx—0 g = ( tanU+U 3>atx L

U
Max M = Mj sec 7 at x =

L
Max ¥ = - — 0 tx=§
COSE
M]_ 0
—-P—j tan—z- at x =

G§ abey

9L61 ‘S| Adenaqgay
9°Hg uUo|109g



Table B,4,6,2-5 ~ Beam Column Formulas

Manner of loading and
support

Formulas for maximum bending moment, maximum deflection, end slope,
and constraining moments.

8, .y

My, _ M
Moment equation: x=0 to x=L: M =< 2 1 cos U) sin £ + M; cos z

sin U h| j
: _ 2 - M cos U
Max M at x = j arc ta“CiMl sin U )

Deflection equation:

x=0 to x=L: Y = %[H1+(M2-M1)§

sin 2
- (MZ-M1 cos U) .-_..-l..-Ml cosﬁ]

sin U

Cde

@
1
o

79 -My My; .Mjpcos U
(! - =0
T J sin U at x

8-%<H2-H1 My - M) cos U

My
cgsu+-j—sinU at x =1L

L jsinU
1 u
_ _1 - cos
Hl-H2—2Wj( sin..ll )
2 U
1 - cos 5
2
atx=-I-"- 1«{:l Wi tany--
2 2 2 sin U U
7 cos 5
(1 -eo3)
- cOo3 &
baxy = -8 [can T2 2
2p 2 2 gin U cos U
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Table B. 4,6, 2*6 Beam Column Formulas

I R A 78 e o 7 et T 3R PR A v

|

Fermulas for
and constraining moments.

max hrum bending moment , maximum del.ic..ion, end slope,

U
—£7)
/

Deflection equation: x = L

sin

M- =My = w (J)Z (1 -
- N tan 3
X U
2
at x = %;M =w (J),/——‘—ﬁ“ - {)
= sin =
2
: 8] g
— - 1 - cos = -
s -~ i 2} /1 2 \/ 2 \\ LU 9-2 1
voadax Y = - S O T /\ T } + sec 2 8 - i
E - L \ tan -Lé- \. cos = / -
i 2
[}
' — U
11, : i tan U { sec — - 1)+
Y Max M = M; = Lo 2
ax =01 2 | jtanU - L |
P/; . LA 2 L
W~ | | . L
L R Moment equatiom: x =7 tox =1L
L X I
/sin ] x;% . < o x _ St p Sing )
M = Mj - cos = HF Wjlsin = cos = -
WNtan U j 2 i tan U
X

1T sin = %
to x=L; Y= - P ‘Mﬂfl- =+ E_Eqé— - ¢os ?
g sin 2

2

2
o (s

1 - sin U cos X
tan U 2 j

L€ 9bed
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‘Tablé B.4.6.2-7 Beam Column Formulas

Manner of loading and
support

Formulas for maximum bending moment, maximum deflection, end slope,
and constraining moments.

12.

P

X

'"GE RIRRREREER i[Jw

— —-1

U U
tan U {tan 5 -3
Max M = Ml = WLj

tan U - U
. _ WL M3
R=2 "1
Moment equation: x=0 to x=L; M=M1<:ot U sin -:]:5- - cos }3(-)
sin 7
N2 ] X
+ w(j) [ sinu (l-cos U) + cos - 1J

Deflection equation: x=0 to x=L; Y=

wa

X
M3 (}-‘5 + cot U sin T -cos¥
L 3 j
X

N2 . x sin = x Lx - x )
- cot Usin X - — L _ - cos = + 1
() ( j sin U j 2 (_])2

13, Same as Case I
(cantilever with end load)
except that P is tensile.

Max M

Wj tanh U at x =1L

Maxy—-g.(L-jtanh U) at x = 0

14, Same as Case 2
(cantilever with uniform
load) except that P is
tensile,

Max M = - wj [L tanh U - j (1- sech U) at x = L

2
Max ¥ = E%_I:J (-%-sechU)-L(tanh U-U)] at x = 0

g¢ abey
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+Table B.4,6,2-8 Beam Column Formulas

Manner of loading and
support

Formulas for maximum bending moment, maximum deflection, end slope,
and constraining moments.

15, Same as Case 3 (end

L
supports, center load) Max M = l-Wj tanh % at x = E
except that P is tensile, 2 s
Max Y = - L. 4 tanh g at x = L
* P\&4 2 2 2
16. Same as Case 4 9 U
(end supports, uniform load) Max M = w(j) 1 - sech 3
except that P is tensile,.
2
_ _w |L 2 U
Max Y = - 5 [E‘ - (i) (} - sech 5)}

17. Same as Case 9
(fixed ends, center load)
except that P is tensile.

ws/ cosh g -1
My =My = O S—
1 2 sinh g
2
U
.71 - cosh &~
Max+M=y2-l< = 2U+tanh%>atx=%
sinh 2 cosh 0

U 2
U 1 - cosh 5)
rox v = - B - e § - |
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| Table B.4.6.3-]

REFERENCE LISTING FOR OTHER BEAM-COLUMN LOADING CONDITIONS

w

P NS AR RNNENAT RN P

S S

LOADING CONDITION DESCRIPTION REF.
W
1,—; w M
| S v ‘44Tﬂ1 { General Loads on Multi-Span Supports 22
D FA VAN
" l !
T Uniformly Distributed Axial Load on
D AT = Three or More Supports 18
w
1] .
Ends Hinged, Tapered Beam-Column with
P -— P Triangular Load (Applicable also to any 21
PAY general cross section and loading)
P ‘ I \ Ends Pinned with An Offset Longitudinal
f L - - ] Compressive Load Balanced by a Uniform
d A= — T A Shear Flow 3
w
P SEASARNNNNRNASNRIRURIANAD P Ends P 4 —
—_ | D nds Pinned wit astic Foundations
TTITTITTIIIIILL Y Tensile and Compressive Axial Load 13

of abey
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%Table B.h.qiS-Z

REFERENCE LISTING FOR OTHER BEAM-COLUMN LOADING CONDITIONS

LOADING CONDITION DESCRIPTION REF.
w
p NAARARRRRANRERANANRRARAAD P Ends Fixed with Elastic Foundations
el st rrrerrri Tensile and Compressive Axial Load 13
w
P —P
PIT7T 77777777777 777770,
M M
P / -—PF
— 2 Ends Free with Elastic Foundation and
Equal Concentrated End Moments Tensile
and Compressive Axfial Load 13
M M
P { P
7
P /\M H"\ P
'Eg77777722z235;;777é§ Ends Pinned with Elastic Foundation and
Equal Concentrated End Moments Tensile
and Compressive Axfal Load 13

14 abey
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[Table B.4.6.3-3

REFERENCE LISTING FOR OTHER BEAM.-COLUMN LOADING CONDITIONS

LOADING CONDITION DESCRIPTION REF.
v MM Ends Pinned with Local Uniformly
P -—2F Distributed Transverse Load 13
a A
w
P r [T 1 P Ends Pinned with Partial Uniformly
= yay Distributed Transverse Load 22
M
¥ ; ;x! ié P Ends Fixed with Applied Moment at Center 31
P
w
P P
-_ pay 7ay -— Ends Pinned with Triangular Load 31
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