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B 3.0.0 SPRINGS

B 3.1.0 Helical Springs

B 3.1.1 Helical Compression Springs

Most compression springs are open-coil, helical springs which
offer resistance to loads acting to reduce the tength of the spring.
The longitudinal deflection of springs produces shearing stresses in
the spring wire. Where particular load-deflection characteristics
are desired, springs with varying pitch diameters may be used. These
springs may have any number of configurations, including cone, barrel,
and hourglass .

Round-Wire Springs

The relation between the applied load and the shearing stress for
helical springs formed from round wire is

H
@
]

shearing stress in pounds per sq. inch.
(not corrected for curvature)
P = axial load in pounds

D = mean diameter of the spring coil (Outside diameter
minus wire diameter or inside diameter plus wire
diameter)

d = diameter of the wire in inches.

Equation (1) is based on the assumption that the magnitude of the
stress varies directly with the distance from the center of the wire;
but, actually, the stress is greater on the inside of the cross section
due to the curvature. The stress correction factor (k) used to deter-
mine the maximum shearing stress for static loads is found in
Fig. B 3.1.1-1. This correction factor gives the effect of both
torsion and direct shear. The equation for the maximum stress is

£ =k f =k§?-’-§- e (2)
max g ]'[d
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B 3.1.1 Helical Compression Springs (Cont'd)

where

k = kc + 0.615 Stress concentration factor plus the effect
C1 of direct shear

k. = Stress concentration factor due to curvature
C 501'5

¢, = D Ratio of mean diameter of helix to the
d diameter of the bar or wire

2.1

1.9

1.8

st

1.7

1.6 A\

Stress Concentration Correction Factor, "k"

0 1 2 3 4 5 6 7 8 9 10 11 12
Spring index, €y = g

Fig., B 3.1.1-Y
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B 3.1.1 Helical Compression Springs (Cont'd)

Stress correction for temperature.

Corrections must be made to account for changes in strength and
in elastic properties of spring materials at elevated temperatures,
This correction is made to the allowable stress of the spring material,
Values for various materials at various temperatures may be obtained
from Section 3.0.0 of the Design Manual.

Deflection

The formula for the relation between deflection and load
when using round wire in helical springs is

o
]

total deflection
number of coils
modulus of rigidity

il

N
G

[}

The deflection may also be given in terms of the shearing stress
by combining Eqs. (1) and (3). Stress concentration usually does not
affect deflection to an appreciable degree, and no adjustment is needed
in Eq. (1). The expression for the deflection is

Spring rate

The spring rate (K) is defined as the amount of force required
to deflect the spring a unit length. By proper substitution of the
previous equations, the spring rate may be shown to be

Buckling of Compression Springs

A compression spring which is long compared to its diameter will
buckle under relatively low loads in the same manner as a column. How-
ever, the problem of buckling is of little consequence if the compres-
sion spring operates inside a cylinder or over a rod.
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B 3.1.1 Helical Compression Springs (Cont'd)

As the critical buckling load of a columm is dependent upon the
end fixity at the supports, so is the critical buckling load of a
spring dependent upon the fixity of the ends. In general, a compres-
sion spring with ends squared, ground, and compressed between two
parallel surfaces can be considered a fixed-end spring. The following
formula gives the critical buckling load.

Pe = JKL trneniinnnnnnnn. e, U .. (6)
where

J = factor from Fig. B 3.1.1-2 =%§£—é~§-§—tﬁ‘g

L. = free length of spring eng

K = spring rate (See Eq. 5)

Fig. B 3.1.1-2 (curve 1) is for squared and ground springs with
one end on a flat surface and the other on a ball. Curve 2 indicates
buckling for a squared and ground spring both ends of which are com-
pressed against parallel plates. This is the most common condition
with which the user must contend.

Helical Springs of Rectangular Wire.

When rectangular wire is used for helical springs, the value of
the shearing stress can be found by use of the equations for rectangu-
lar shafts. A stress concentration factor is applied in the usual way
to compensate for the effect of curvature and direct shear. For the
springs in Fig. B 3.1.1-3 (a) and (b) the stresses at points Aj and A»
are as follows:

kPR

= 7 for poimt A} ...l N
5 o be
1
kPR
£ = > for point Az P £8)
s azbc

values foro:1 anda2 for various b/c ratios are found in Table B 3.1.1-1.

The stress concentration factor should be applied for point A] in
Fig. B 3.1.1-3(a) and to point A, in Fig. B 3.1.1-3 (b). The stress
concentration factors of Fig. B 3.1.1-1 may be used as an approximate
value for rectangular wire.
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B 3.1.1 Helical Compression Springs (Cont'd)
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Fig. B 3.1.1-2
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Fig. B 3.1.1-3
b/c}l1.00 |1.2011.5011.75]2.00}2.50(|3.00]|4.00}5.00{6.00[8.00]10.00| =
al .208 |.219|.231},239}.246(.258].267].2821.291},299] .307|.312 ].333
a2 .208 |.235(.2691.291).309|.336(.355|.378(.3921.402| .414(.421 --
B |.1406].166|.196}.214|,229).249].263].281].291/.299].307(.312 }.333
Table B 3.1.1-1
The equation for the relation between the load (P) and the
deflection (9) is
3
& = ziT-?R—fl .................................... e (9)
BGbe

where:

B is obtained from Table B 3.1.1-1
b and ¢ are as shown in Fig. B 3.1.1-3
the mean radius of the spring
the number of coils
the modulus of rigidity

R is
N is
G 1s
P is

the axial load
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B 3.1.2 Helical Extension Springs

Helical extension springs differ from helical compression springs
only in that they are usually closely coiled helices with ends formed
to permit their use in applications requiring resistance to tensile
forces. It is also possible for the spring to be wound so that it is
preloaded, that is, the spring is capable of resisting an initial
tensile load before the coils separate. This initial tensile load
does not affect the spring rate. See Figure B 3.1.2-1 for the load-
deflection relationship of a preloaded helical extension spring.

Spring with

initial
tension
Load ~
~
g
| P - ’ '\ Spring without
Initial - initial tension
tension 7
Deflection

Fig. B 3.1.2-1

Stresses and Deflection

In helical extension springs, the shape of the hook or end turns
for applying the load must be designed so that the stress concentra-
tion effects caused by the presence of sharp bends are decreased as
much as possible. This problem is covered in the next article.

If the extension spring is designed with initial tension, formulas
(1) through (9) from Section B 3.1.1 are valid, but must be applied
with some understanding of the nature of the forces involved.
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B 3.1.2 Helical Extension Springs (Cont'd)

Stress concentration in hooks on extension springs.

P

|
< é -
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T

(a) )]

=N

Fig. B 3.1.2-2

a. Bending Stress

Fig. B 3.1.2-2(a) illustrates the bending moment (PR) due to the
load (P). The bending stress at point A is:

g o= 32BR, L8R PO (10)
b 3 2
nd nd

where k is the correction factor obtained from Fig. B 3.1.2-3, using
the ratio 2ry/d.

r = radius of center line of maximum curvature.
A simplified equation is:
/T
£, = 32%5- ;l-> ................................. (11)
nd 3

ry = inside radius of bend.

The maximum bending stress obtained by this simplified form will
always be on the safe side and, under normal conditions, only slightly

higher than the true stress.
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B 3.1.2 Helical Extension Springs (Cont'd)

b. Torsional Stress

At point A', Fig. B 3.1.2-2(b), where the bend joins the hel

B3
1961

ical

portion of the spring, the stress condition is primarily torsion. The
maximum torsional shear stress due to the moment (PR) is
. _ L6PR ( 4, -1 ) 12)
s ﬂd3 4Gy - &
¢ -2
1 d
A simplified form similar to the one for bending is
r
£ = Lé—?( -}) ................................ (13)
s nd 4
This will also give safe results,
4 r- c = ! —
l ]
-
3 A
\ :
k N o
N, ﬂ—
) 'N _h s
e ey,
1
0
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o= -
n
oo
"
TIY w

Fig. B 3.1.2-3
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B 3.1.3 Helical Springs with Torsional Loading

A helical spring can be loaded by a torque about the axis of the
helix. Such loading, as shown in Fig, B 3.1,3-1(a), is similar to the
torsional loading of a shaft. The torque about the axis of the helix
acts as a bending moment on each section of the wire as shown in
Fig. B 3.1.3-1(b). The stress is then

Mc
fly = Kp T et PRI (14)

where the stress concentration factor, K,, is given as

2
_ 3C;” -C -0.8 inner
k1 =

3C1{(C1 - 1) edge Rectangular
cross section
2 3¢1(Cy -1) edge

Cl = 2R ; "h" 1s the depth of section perpendicular

h to the axis.
2
Ka = 4C1 -G -1 inner
3 4C1(Cl - 1) edge Round
5 cross section
X, = 4C1" + Cp -1 outer wire
4 4C1(C1 + 1) edge
2R
C1 ='E—

Angular deformation

The deformation of the wire in the spring is the same as for a
straight bar of the same length "S" The total angular deformation 6
between tangents drawn at the ends of the bar is:

Angle 9 in some cases may amount to a number of revolutions.
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B 3.1.3 Helical Springs with Torsionul Loading (Cont'd)

Fig. B 3.1.3-1



B 3.1.4

The
Fig. B 3.

Section B 3
19 May 1961
Page 12

Analysis of Helical Springs by Use of Nomograph

procedure for using the pomographs (Fig. B 3.1.4-1 and
1.4-2) for helical springs are as follows:

Set the appropriate wire diam. on the "d" scale.
Set the appropriate mean diam, on the "D" scale.

Connect -the two points and read the curvature correction
factor:

a. For tension and compression springs read the "y'" scale
on Fig. B 3.1.4-1.

b. For torsion springs read the "k'" scale on Fig. 3.1.4-2.
Set the correction factor, obtained in step 3, on the
appropriate "y" or "k" scale to the right of Fig. B 3.1.4-1
and Fig, B 3.1.4-2.

Set the "calculated" (Eq. 1 or Eq. 14 with k, = 1) stress
on the "f" scale.

Connect the two points, from steps 4 and 5, and read the
corrected stress on the (f') scale,
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B 3.1.4 Analysis of Helical Springs by Use of Nomograph (Cont 'd)

FIBER STRESS CORRECTION FOR CURVATURE
Helical Extension and Compression Springs
Find Correction Factor Using Correction Factor Found on
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B 3.1.4 Analysis of Helical Sprinzs by Use of Nomograph (Cont'd)

FIBER STRESS CORRECTION FOR CURVATURE
Torsion Springs
Find Correction Factor Using Correction Factor Found on
Left Half of Chart--Determine
True Fiber Stress
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B 3.1.5 Maximum Design Stress for Various Spring Materials

Maximum Design Stress - KSI
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Fig. B 3.1.5-1
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Maximum Design Stress - KSI
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Maximum Design Stress - KSI
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B 3.1.6 Dynamic or Suddenly Applied Spring Loading

A freely falling weight, or moving body, that strikes a structure
delivers a dynamic or impact load, or force. Problems involving such
forces may be analyzed on the basis of the following idealizing
assumptions:

1. Materials behave elastically, and no dissipation of energy
takes place at the point of impact or at the supports owing to local
inelastic deformation of materials,

2. The deflection of a system is directly proportional to the
magnitude of the dynamically or statically applied force.

Then, on the basis of the principle of conservation of energy,if
it may be further assumed that at the instant a moving body is stopped,
its kinetic energy is completely transformed into the internmal strain
energy of the resisting system, the following formulas will apply:

(a) For very slowly applied loads

P
T em et i e et e e e e 16
b=z (16)
(b) For loads suddenly applied
o = %2 ........................................ (17

(¢) For loads dropped from a given height

where:

= Total deflection
Spring rate

Load on spring

Height load is dropped.

v RO
il

The following problems will illustrate such conditions and their
solutions:

Problem 1.

Given a spring which compresses onc inch for each pound of load,
determine the maximum load and deflection resulting from a 4 1b,
weight,
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B 3.1.6 Dynamic or Suddenly Applied Spring Loading (Cont'd)
{(a) Case 1: ‘
The weight is laid gently on the spring.
8 == ===4 in. from Eq. 16
since K = 1 maximum load = 4 1b.
(b) Case 2:
The weight is suddenly dropped on the spring from zero height.

5 = %E = 2{&1 = 8 in. from Eq. 17

maximum load = 8 1b.
(c) Case 3:

The weight 1s dropped on the spring from a height of 12

inches.

$2 2P(IS< +38) _ 2{4) (12 + 8) from Eq. 18
or

2

67 -8 -96 =0

_ 8+ V82 + 4(9)

2
maximum load 14.6 1b.

® = 14,6 in.

From the maximum load produced, Eq. 2 section B 3.1.1 may be
used to calculate the stress produced. This should be within the
limits indicated on Fig. B 3.1.5-1, B 3.1.5-2, B 3.1.5-3 and B 3.1.5-4,

Problem 2.

For many uses it is necessary to know the return speed of a
spring or the speed with which it will return a given weight. A
typical example of this problem could be stated as follows: a spring
made of 5/16 in. by 3/16 in. rectangular steel contains 4 3/8 total
coils, 2 3/8 active coils, on a mean diameter of 1 5/16 in. The
spring compresses 5/32 in. for 200 1b, load. If the spring is com-
pressed and then instantaneously released, how fast will it be moving
at 1ts original free length position of 1 21/32 in.? The solution is
as follows: :
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B 3.1.6 Dynamic or Suddenly Applied Spring Loading (Cont'd)

Weight per turn = n(l 5/16)(3/16)(5/16)(.283) 1b. per cu. in.
= .0685 1b. of steel in each coil

L0685 (2 3/8) active coils (1/3) = ,0542 1b (one-third of the
weight of active spring material involved.)

To this .0542 1b. we add the dead coil at the end plus the moving
weight, if any.

The equivalent total weight (.0542 + .0685) is 0.1227 1b,

The potential energy of a spring is equal to 1/2 the total load
times the distance moved, or 1/2(200)(5/32) = 15.6 in. 1b. The
kinetic energy equals 1/2 Mv‘ wherein (M) is the mass and (v) is the
velocity.

Mass = HE%BEE where g is the gravitational acceleration,

or 32.16 ft/sec./sec.

122742
2(32.16) (12)

Therefore 15.6 = or v = 314 in/sec

Often springs are used to absorb energy of impact. In most
such instances springs must be designed so that they will absorb the
entire energy. In a few cases partial absorption is tolerated. A
typical problem of this type follows.

Problem 3.

A 30 1b, weight has a velocity of 4 ft. per second. How far will
a spring that has a spring rate of 10 lb/in. be compressed?

KINETIC ENERGY

12 _30(8)(4) _
K.E. > Mv 7032.16) 7.46 ft. 1b,

or
7.46(12) = 89.52 in.1b.

Spring energy = % load times deflection

Load = rate per inch times deflection

Spring energy = %-sz = 89.52 in. 1b.
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B 3.1.6 Dynamic or Suddenly Applied Spring Loading (Cont'd)

l‘lOBZ = 89.52
2
62 = 17.90

deflection, & = 4.23 in.

If springs are used to propel a mass, a parallel attack using
velocity and acceleration applies.

Problem &.

Let it be required to find the spring load that will propel a
1-1b. ball 15 ft. vertically upward in 1/2 second. It is assumed
that the spring can be compressed a distance of 1 ft,

In order to travel 15 ft. in 1/2 second the 1-1b., load must have
a certain initial velocity. This can he found as follows:

-h gt
vELYY
wherein: h = height )
g = 32,16 ft. per sec?
t = time 1
15  32.16 (E)
=3 + — = 38.04 ft. per sec., Spring velocity at
> free height.
v2 _ (38.06)°
Spring acceleration = 7 = Z(if—hﬂ = 723 ft/sec/sec

Force equals mass times acceleration so

F = 723(1) _ 22,5 1b. avg.

T 32.16

The average spring pressure is 1/2 the total load. Hence the
spring will compress 1 ft. with 2(22.5) or 45-1b. of load. Often, it
is desired to know how high the weight would be propelled. This can
be determined by equating the work performed by the spring to the work
of the falling weight; thus work equals force times distance,

45

In the spring we have - (1) ft.

In the weight we have 1-~1b. (h)

Hence 1(h) = 4 (1) = 22.5 ft., the height to which the weight
would be throwmn.
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B 3.1.6 Dynamic or Suddenly Applied Spring Loading (Cont'd)

If we were to apply the previous formula
62 = &E—(%-i—:i to the springs,

we must remember (S) is the height the load is dropped.

The total
distance traveled by the weight is (S + ).

Therefore, h = S + & 1in this case

2(1)h
45

Substituting 1

h

22.5 ft,
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B 3.1.7 Working Stress for Springs

If the loading on the spring is continuously fluctuating, due
allowance must be made in the design for fatigue and stress concentra-
tion. A method of determining the allowable or working stress for a
particular spring is dependent on the application as well as the
physical properties of the material.
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B 3.2.0 Curved Springs

The analytical expression for determining stresses for curved
springs is

P M 1
=+ = 4 =X)L R
£=%3t 0 1+ Z Rty .. (19)

in which the quantities have the same meaning defined in section
B 4.3.1.

Displacement of curved springs is determined by use of
Castigliano's theorem.

9 N O V_ oV M_ oM
N A— = e — — ___d
°, T op fEA 5'1-7d8+f Ga op 98t EAy R OF “°
M oN N oM 20
+U/3EAR Sp ds t/\EAR Sp 45 ceeeeeeieln (20)
P
in which
N = normal force i 3
E = Modulus of Elasticity P
G = Modulus of Rigidity ‘
A = Cross-sectional area
R = Radius to centroid
ds = Incremental length \
ZR
Yo = 22 \ Y/
Z+1 /
X 4
z=_.]:. ._.I._dA “
y = is measured from the centroid Fig. B 3.2.0-1

These expressions for stresses and displacements are quite
cumbersome; therefore, correction factors are used to simplify the
analysis. The correction factors (K) used to determine the stresses
are given in section B 4.3.1. The expression for the stress is

See Table B 4.3.1-1 for values of correction factor K.

Deflection formulas for some basic types of curved springs are
given in Table B 3.2,0-1. Complex spring shapes may be analyzed by
combination of two or more basic types.
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3.2.0 Curved Springs (Cont'd)
Table B 3,2.0-1
Spring types Deflection
u — F
K| xex’
—— 5 = (m + 5) *
B K

where @ = B for finding K

_ 2kPR” B
®="3Er ( )

where @ = % for finding K

4xeR’ B
® = "3Er < "')

where O = Q for finding K

o[ (-]

where O = E-for: finding K
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B 3.2.0 Curved Springs (Cont'd)
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Fig. B 3.2.0-2
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B 3.2.0 Curved Springs (Cont'd)

For close approximations, the following conditions should be met:

flat springs

spring thickness b 6
radius of curvature R
round wire
wire diameter - 4 < 0.6
radius of curvature R

Figure B 3.2.0-3 is a typical curved spring. The deflection of
the spring at point A is calculated as follows:

Spring Characteristics /—| Ul --i U2
h -
2 < 0.6 u, = 2.5" B, | )
R, | h
= = - "
Bl 2 R1 Rz 1
P2=72 2 A
u, = 1" U ot
1 1 {p
Fig. B 3.2.0-3
Solution -

The solution involves two basic types (type B and A of Table B 3.2.0-1),
Type A solution is used for that portion of the spring denoted by sub-
script (2), and type B solution is used for that portion of the spring
denoted by subscript (1),

Correction factor, K (from Fig. B 3,2.0-2)

u
1 1 _ _ o _ 2 _ 25 _
— =1= 1, 51 = 180, K1 = .80 - < 2.5,
1 o 2
o, = 90
1 _ o _
By = 90, K2 86

Deflection at point A
2K PR, N K_PR,> 3
A 3EI 2 3E1 2

5 = 2(.8) Pgl)3 1+ & 3+ .86Pg123 2.5 4+ & 3
A 3EI 2 3EI ’ 2

_ 28.4P
A~ TEI
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B 3.3.0 3elleville Springs or Washers

Belleville type springs are used where space recquiraments
necessitate high stresses and short ramge of motion., & compiece
derivation of data that is presented in this sectiou will be fourd in
"Transactions of Amer. Soc. of Msch, Engineers", May 1936, Volume 58,
No. &4, by Almen and Laszlo,

Symbols

= e o Oy

<

B

# 4 % 0o

6&&—4

—_—
iy o
-t I.D.= 2b
i i v
l N
st
. Ef
Fig. B 3.3.0-1 .

Load in pounds
Deflection in inches
Thickness of material in inches
Free height minus thickness in inches
One-half outszide diameter in inches
Young's modulus
Stress at inside circumference
ratio of Q0. . 2
I1.D. b
Poisson's ratio

M, €1 and Cj are constants which can be taken from the chart,
Fig. B 3.3.0-4, or calculated from the formulps glven.

The formulas are:

c
1 g lpgek

c

6 (-1)2 2D
T logek 2 AR R RN

k

= 6 -ik-lj - l R A A A R I A N R R (23)
logek

- oy e e, (26)
2 n logek * 6 s e b s s e .
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B 3.3.0 Belleville Springs or Washers (Cont'd)

The deflection-load formula, using these constants is

P ﬁkaZbZ[( h _%)(h _ 5) . t,} (25)

The stress formula is as followﬁ:

- E% .2 PP ¢
‘ (1-v2)m<2b2[cl<h 2>+c2t] e

' Before using these formulas to calculate a sample problem, there
are some facts which should be considered. 1In the stress formula it
is possible for the term (h ~ 3/2) to become negative if (8) {is
large. When this occurs, the term inside the brackets should be
changed to read Cj(h - 8/2) ~ Cyt, Such an occurrence means that the
maximum stress is tensile,

For a spring life of less than one-half million stress cycles, a
fiber stress of 200,000 p.s.i. can be substituted for f, even though
this might be slightly beyond the elastic limit of the steel, This is
because the stress is calculated at the point of greatest intensity,
which {s on an extremely small part of the disc. Immediately surround-
ing this area is a much lower-stressed portion which so supports the
higher-loaded corner that very little setting results at atmospheric
temperatures. For higher operating temperatures and longer spring
life lower stresses must be employed.

"Fig B 3.3.0-2 displays the load~deflection characteristics of a
.040 in. thick washer for various h/t ratios.

It is noted (from Fig. B 3.3.0-2) that for ratios of (h/t) under
1.41 the load-deflection durve is somewhat similar to that of other
conventional springs, As this ratio approaches the value of 1.41, the
spring rate approaches zero (practically horizontal load-deflection
curve) at the flat position, When the (h/t) ratio is 2.83 or over
there is a portion of the curve where further deflection produces a
lower load., This is illustrated in the curves for the washers having
(h/t) ratios of 2.83 and 3.50. Such a spring, when deflected to a
certain point, will snap through center and require a negative loading
to return it to its original position,

The washers may sometimes be stacked so as to obtain the load-
deflection characteristics desired. The accepted methods are
illustrated in Pig, B 3.3.0-3,
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B 3.3.0 Belleville Springs or Washers (Cont'd)
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Fig., B 3.3.0-2
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B 3.3.0 Belleville $prings or Washers (Cont'd)

Series Parallel Parallel - Series

Fig. B 3.3.0-3

As the number of washers used increases, so does the friction in
the stacks. This is not uniform and could result in spring units
which are very erratic in their load-carrying capacities. Belleville
springs, as a class, are one of the most difficult to hold to small
load-limit tolerances.
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B 3.3.0 Belleville Springs or Washer (Cont'd)

2.3 %
2.2
o r/
2.1 2 / _
V.

2.0 V4 1.0
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1.3 / 0.3
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1.2 1.6 2.0 2.4 2.83.2 3.6 4.04.4 4.8
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Fig.B 3.,3.0-4 Belleville Spring Constants: M, C1 and Cq
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B 3.3.0 Belleville Springs or Washers (Cont'd)
1.D,
Example Problem I | .
Given: /11 1\ h:\?\
0.0, = 2 . 't
I.D. = 1.25" 0.D. L
Load .to deflect .02" = 675 1b.
Required: Fig. B 3.3.0-5

Determine required thickness, t and dimension h.

Solution:

) = Q:D. _ 2.00

I.D. ~1.25 - 10

The constants M, C; and C» may be taken from the curves in
Fig. B 3.3.0-4 or may be calculated as follows:

o —b -2 6 a.6-1.0%_ 5
" Togk 2 3140047 4 o2

6 k-1 _ 6 1.6 - 1.0 _ _
¢, =z log k [logek -1 ] T 3.14(0.47) [ 0.47 1 } 1.123

_ 6 k-l1] __ 6 1.6 - 1.0 | _
€2 7 T Togx [ 2 ] 3.14(0.47) { 2 } 1.220

The Deflection-Stress Formula

-l oo1) o]

may be written in the form

£MaZ (1-v

h =
CIES

nln
=N

5
+t 3
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B 3.3.0 Belleville Springs or Washers (Cont'd)

Assume that the washer shown in Fig. B 3.3.0-5 is steel

f = 200,000 psi
max
E = 30,000,000 psi
v = .3
o) = 0.02 in.
M = 0,57
C1 =1.123
C2 = 1.220
a = 1.00 (half outside dia., inches)

try t = .04 and solve for dimension h

2 2
200,000 (1) (5nQ-3) , .02 L2280 (.04) - .120 in.
(1.123) (. 02) (30) 10 '

This value for (h) is then substituted in the deflection-load
formula to obtain the load.

_ _EB B . 3

30¢10%) €. 02)
(1-.3%) (.57) (1)

[(.121-.01)(.121-.02)(.oa)+(.04)3] = 600 1b.

Since this load is too low, the calculation is repeated using a
stock thickness (t) of .05 in.

Then, solving again for h, the result is
h = .110 in.

Therefore, substituting this value of h into the formula used to
calculate the previous value of load (P), the new value of (P) is

P = 665 1b.
This is as close as calculation need be carried. It is not

expected that this or a similarly calculated spring will be deflected
beyond the amount used in the calculation.



Section B 3

19 May 1961
Page 36
REFERENCES
Manuals

1. Chrysler Missile Operation, Design Practices, Sec, 108,
Dtd. 1 November 1957,

2. Convair (Fort Worth), Structures Manual, Sec., 10.4.0,
Vol., 1.

Handbook

1, Associated Spring Corporation, Mechanical Spring Design,
Bristol, Conn.

Periodicals

1. Xlaus, Thomas and Joachim Palm, Product Engineering, Design
Digest Issue, Mid-September 1960.

Text Books

1, Seely, Fred, B. and Smith, J. 0., Advanced Mechanics of
Materials, Second Edition, John Wiley & Sons, Inc.,
New York, 1957.

2. Spotts, M. F., Design of Machine Elements, Second Edition,
Prentice-Hall, Inc., Englewood Cliffs, N, J., 1955,




