/\/74.—74,/é(:bk

NASA TECHNICAL
MEMORANDUM

NASA T™M X- 73305

ASTRONAUTIC STRUCTURES MANUAL
VOLUME |

Structures and Propulsion Laboratory

August 1975

NAGA

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama

MSFC Fo m 3190 (Rev June 1971)




. 19 S‘"P_,
T O D

-

#
TECHNICAL REPORT STANDARD TITLEMAGE

1. REPORT NO. 2. GOVERNMENT ACCESSION NO, 3. RECIPIENT'S CATALOG NO.
NASA TM X-73305
4 TITLE AND SUBTITLE S, REPQRT DATE

August 1975

ASTRONAUTIC STRUCTURES MANUAL -
VOLUME 1 I

6. ~SERFORMING ORGANIZATION CUDE

7. AUTHOR({S) 5. PIRFORMING ORGANIZATION REPORT #
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO,
George C. Marshall Space Flight Center 77 CONTRACT OR GRANT NO.

Marshall Space Flight Center, Alabama 35812

13. TYPE OF REPORT & PERIOD COVERED

12. SPONSORING AGENCY NAME AND ADDRESS
Technical Memorandum
National Aeronautics and Space Administration

WaShington D.C 20546 141. SPONSORING AGENCY CODE
] . .

15. SUPPLEMENTARY NOTES

Prepared by Structures and Propulsion Laboratory, Science and Engineering

i 16, ABSTRACT

This document ( Volumes I, II, and III) presents a compilation of industry-wide methods inl
aerospace strength analysis that can be carried out by hand, that are general enough in scope to
cover most structures encountered, and that are sophisticated enough to give accurate estimates
of the actual strength expected. It provides analysis techniques for the elastic and inelastic stresg
ranges. It serves not only as a catalog of methods not usually available, but also as a reference
gsource for the background of the methods themselves.

An overview of the manual is as follows: Section A is a general introduction of methods
used and includes sections on loads, combined stresses, and interaction curves; Section B is
devoted to methods of strength analysis; Section C is devoted to the topic of structural stability;
Section D is on thermal stresses; Section E is on fatigue and fracture mechanics; Section F is
on composites; Section G is on rotating machinery; and Section H is on statistics.

These three volumes supersede NASA TM X-60041 and NASA TM X~-60042,

17. KEY WORDS 18. DISTRIBUTION STATEMENT

Unclassified — Unlimited

19. SECURITY CLASSIF, (of this report) 20. SECURITY CLASSIF, (of this page) 21. NO, OF PAGES | 22. PRICE

Unclassified Unclassified 839 NTIS

MSFC - Form 3292 (Rev December 1973) For sale by National Technical Informatian Service, Springfield, Virginia 22151



STRUCTURES MANUAL

FOREWORD

This manual is issued to the personnel of the Strength Analysis
Branch to provide uniform methods of structural analysis and to pro-
vide a ready reference for data. Generally, the information contained
in this manual is a condensation of material published by universities,
scientific journals, missile and aircraft industries, text book pub-
lishers, and government agencies,

Illustrative problems to clarify either the method of analysis or
the use of the curves and tables are included wherever they are con-
sidered necessary. Limitations of the procedures and the range of
applicability of the data are indicated wherever possible,

It is recognized that all subjects in the Table of Contents are not
present in the body of the manual; some sections remain to be devel-
oped in the future. However, an alphabetical index of rontent material
is provided and is updated as new material is added. New topics not
listed in the Table of Contents will be treated as the demand arises.
This arrangement has been utilized to make a completed section avail-
able as soon as possible. In addition, revisions and supplements are
to be incorporated as they become necessary,

Many of the methods included have been adapted for computerized
atilization. These programs are written in Fortran Language for utili-
zation on the MSFC Executive VIII, Univac 1108, or IBM 7094 and are
cataloged with example problems in the Structural Analysis Computer
Utilization Manual,

It is requested that any comments concerning this manual be
directed to:

Chief, Structural Requirements Section
Strength Analysis Branch

Analytical Mechanics Division

Astronautics Laboratory

National Aeronautics and Space Administration
Marshall Space Flight Center, Alabama 35812

ii

August 15, 1970
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A1,0.0 Stress and Strain

The relationship between stress and strain and other material properties,
which are used throughout this manual, are presented in this section, A brief
introduction to the theory of elasticity for elementary applications is also pre-
sented in this section.

Al,1,0 Mechanical Properties of Materials

A brief account of the important mechanical properties of materialg is given
in this subsection; a more detailed discussion may be found in any one of a num-
ber of well known texts on the subject. The numerical values of the various
mechanical properties of most aerospace materials are given in MIL-HD BK-5
(reference 1), Many of these values are obtained from a plotted set of test re-
sults of one type or another, One of the most common sets of these plotted sets
is the stress-strain diagram, A typical stress-strain diagram is discussed in
the next subsection,

Al,1,1 Stress-Strain Diagram

Some of the more useful properties of materials are obtained from a stress-
strain diagram., A typical stress-strain curve for aerospace metals is shown in
Figure Al.1.1-1, |

The curve in Figure A1, 1, 1-1 is composed of two regions; the straight line
portion up to the proportional limit where the stress varies linearly with strain,
and the remaining part where the stress is not proportional to strain. In this
manual, stresses below the ultimate tensile stress (Fy ;) are considered to be
elastic, However, a correction (or plasticity reduction) factor is sometimes
employed in certain types of analysis for stresses above the proportional limit
stress,

Commonly used properties shown on a stress-strain curve are described
briefly in the following paragraphs:

E Modulus of elasticity; average ratio of stress to strain for
stresses below the proportional limit, In Figure A{,1,1-1
E =tan ¢
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Al,1,1 Stress-Strain Diagram (Cont'd)

pa— [astic! Plastic, ¢p s

€

u €Fracture

€ (inches/inch)

Figure A1.1,1-1 A Typical Stress-Strain Diagram

E Secant modulus; ratio of stress to strain above
the proportional limit; reduces to E in the pro-
portional range, In Figure A{,{, 1-1 Eg =
tan 61

E, Tangent modulus; slope of the stress-strain curve
at any point; reduces to E in the proportional

range, In Figure A{i,1,1-1 E, = %ij = tan 6, '
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Al,1,1 Stress-Strain Diagram (Cont'd)

or F Tensile or compressive yield stress; since many
materials do not exhibit a definite yield point,
the yield stress is determined by the , 2% offset
method, This entails the construction of a
straight line with a slope E passing through a
point of zero stress and a strain of . 002 in, /in,
The intersection of the stress-strain curve and
the constructed straight line defines the magni-
tude of the yield stress,

Ft or Fc Proportional limit stress in tension or compres-
P P sion; the stress at which the stress ceases to
vary linearly with strain,

Ftu Ultimate tensile stress; the maximum stress
reached in tensile tests of standard specimens,

Fcu Ultimate compressive stress; taken as Ft

un_
less governed by instability. 4

€ The strain correspoending to F

u tu’

€ Elastic strain; see Figure A1, 1, 1-1,
€ Plastic strain; see Figure A1,1.1-1,

Fracture strain; percent elongation in a pre-
determined gage length associated with tensile
failures,-and is a relative indication of ductility
of the material,

¢fracture (% elongation)

Ail,1,2 Other Material Properties

The definition of various other material properties and terminology used
in stress analysis work is given in this subsection,
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A1.1.2 Other Material Properties (Cont'd)

Fory” Foru

su

sp

G E

Isotropic
Anisotropic

Orthotropic

- 2(1 +v)

Yield and ultimate bearing stress; determined
in a manner similar to those for tension and
compression. A load-deformation curve is
plotted where the deformation is the change in
the hole diameter, Bearing yield ( Fbry) is de-
fined by an offset of 2% of the hole diameter;
bearing ultimate ( Fbru) is the actual failing
stress divided by 1. 15.

Ultimate shear stress.

Proportional limit in shear; usually taken equal
to 0.577 times the proportional limit in tension
for ductile materials.

Poisson's ratio; the ratio of transverse strain
to axial strain in a tension or compression test.
For materials stressed in the elastic range, v
may be taken as a constant but for inelastic
strains v becomes a function of axial strain,

Plastic Poisson's ratio; unless otherwise stated,

vp May be taken as 0. 5.

Modulus of rigidity or shearing modulus of
elasticity for pure shear in isotropic materials.

Elastic properties are the same in all directions,
Elastic properties differ in different directions.

Distinct material properties in mutually per-
pendicular planes,
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A1,1.3 Strain-Time Diagram

The behavior of a structural material is dependent on the duration of loading,
This behavior is exhibited with the aid of a strain-time diagram such as that
shown in Figure Ail, 1, 3-1, This diagram consists of regions that are dependent

Strain
Region
of Creep Creep Limit (no fracture) Curve
Fracture
Inelastic
Strain )
_____ - Elastic Recovery = Elastic Strain
T
Elasti @ @ 2
astic :
: Elastic . /
Strain Aftereffect
— —— — — — Permanent Set

1
_‘__Consi:'ant Strain Recovery——#» Time
Loading

Loading Unloading

Figure A1,1,3-1 Strain-Time Diagram

upon the four loading conditions as indicated on the time coordinate, These
loading conditions are as follows:

1. Loading

2. Constant loading
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A1,1,3 Strain-Time Diagram (Cont'd)

3. Unloading
4, Recovery (no load)

The interval of time when the load is held constant is usually measured in
weeks or months, Whereas the time involved in loading and unloading is rela-
tively short (usually seconds or minutes) such that the corresponding strain-
time curve can be represented by a straight vertical line,

The following discussion of the diagram will be confined to generalities due
to the complexity of the phenomena of creep and fracture, A more detailed dis-
cussion on this subject is presented in reference 5,

The condition referred to as "loading' represents the strain due to a load
which is applied over a short interval of time, This strain may vary from zero
to the strain at fracture (€fracture ~ See Figure Al,1,1-1) depending upon the
material and loading,

During the second loading condition, where the load is held constant, the
strain-time curve depends on the initial strain for a particular material, The
possible strain-time curves (Figure A1, 1, 3-1) that could result are discussed
below,

a, Incurve 1, the initial strain is elastic and no additional strain is
experienced for the entire time interval, This curve typifies elastic action,

b, In curve 2, the initial strain increases for a short period after the
load becomes constant and then remains constant for the remainder of the period.
This action is indicative of slip which is characterized by a permanent set re-
sulting from the shifting (slip) of adjacent crystalline structures along planes
most favorably oriented with respect to the direction of the principal shearing
stress.

¢. Incurve 3, there is a continuous increase in strain after the initial
slip until a steady state condition is attained. This curve is indicative of creep
which is generally the result of 2 combined effect of the predominantly viscous
inelastic deformation within the unordered intercrystalline boundaries and the
complex deformations by slip and fragmentation of the ordered crystalline domains,
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A1,1,3 Strain-Time Diagram (Cont'd)

d, Curve 4 is also a combination of slip and creep. The only dif-
ference from curve 3 is that the creep action continues until the material fails
in fracture. This fracture may take place at any time during the constant load
period and is indicated by the upper shaded area in Figure A1, 1.3-1,

During unloading, the reduction in strain of curves 1, 2 and 3 is equal to
the elastic strain incurred during loading, This reduction is referred to as the
nelastic recovery.' It can be seen in Figure A1, 1, 3-1 that in the case of curve
1 the structural member will return to its initial configuration immediately after
unloading, This is not the case for curves 2 and 3 as there will be some residual
strain,

The last condition to be discussed on the strain-time diagram concerns the
recovery period. In this period, some of the strain indicated as inelastic strain
is recoverable, This is true particularly for many viscoelastic materials (such
as flexible plastics) that do not show real creep, only delayed recoverable strains,

The height of the lower shaded area in Figure A1, 1, 3-1 is called the elastic
after effect. The upper bound is the maximum possible permanent set and is in-
dicated by the solid horizontal line, The lower bound could be any one of the
family of possible strain-time curves confined within the lower shaded area,

The limiting curve of the lower bound would approach the permanent set curve
due to slip as indicated by the horizontal dashed line. ¥ slip action is negligible,
this limiting curve would be represented by a line that approaches zero asymp-
totically with increasging time,

Af1,1,4 Temperature Effects

The mechanical properties of a material are usually affected by its tem-
perature., This effect will be discussed in general terms in this section, For
specific information, see the applicable chapter in reference 1.

In general, temperatures below room temperature increase the strength
properties of metals, Ductility is usually decreased and the notch sensitivity
of the metal may become of primary importance. The opposite is generally
true for temperatures above room temperature,

A representative example for the effect of temperature on the mechanical
properties of aluminum alloys is given in Figures Ai, 1. 4-1 through 4. Most
steels behave in a similar manner but generally are less sensitive to tempera-
ture magnitudes,
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Al,1.4 Temperature Effects (Cont'd)
! . \)
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Figure A1.1,4-1 Effects of Temperature on the Ultimate Tensile
Strength (Fy,) of 7079 Aluminum Alloy (from

Ref. 1)
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Al1,1.4 Temperature Effects (Cont'd)
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Al.1.4 Temperature Effects (Cont'd)
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Figure A1l.1,4-3 Effect of Temperature on the Tensile and Compressive

Modulus (E and Ej) of 7079 Aluminum Alloy (from
Ref, 1)
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Al.1.4 Temperature Effects (Cont'd)
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Figure Al.1.4-4 Effect of Temperature on the Elongation of
7079-T6 Aluminum Alloy (from Ref. 1)
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A table for converting hardness numbers to ultimate tensile strength values
_is presented in this section. In this table, the ultimate strength values are in
the range, 50 to 304 ksi, The corresponding hardness number is given for each
of three hardness machines; namely, the Vickers, Brinell and the applicable
scale(s) of the Rockwell machine,

This table is given in the remainder of this section, The appropriate
materials-property handbook should be consulted for additional information
whenever necessary,

Tensile Vickers- Brinell Rockwell
Strength | Firth 3000 kg .
Diamond 10mm Stl | A Scale B Scale C Scale
Ball :
60 kg 100 kg 150 kg
Kksi Hardness Hardness | 120 deg 1/16 in, 120 deg
Number Number Diamond Dia Stl Diamond
Cone Ball Cone
50 104 92 —_ 58 -
52 108 96 - 61 -
54 112 100 -— 64 ——
56 116 104 - 66 -
58 120 108 - 68 --
60 1256 113 - 70 -
62 129 117 — 72 -
64 135 122 -— 74 -

Table Aivri, 5-1 Hardness Conversion Table
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Ai.1,5 Hardness Conversion Table (Cont'd)
Tensile | Vickers- Brinell Rockwell
Strength | Firth 3000 kg
Diamond 10mm Stl A Scale B Scale C Scale
Ball
‘ 60 kg 100 kg 150 kg
ksi Hardness Hardness 120 deg 1/16 in, 120 deg
Number Number Diamond Dia Stl Diamond

Cone Ball Cone
66 139 127 -— 76 —_—
68 143 131 - 77.5 —-—
70 149 136 - 79 -
72 153 140 - 80.5 -
74 157 145 - 82 —
76 162 150 - 83 -
78 167 154 51 84,5 ——
80 171 158 52 86.5 -
82 177 162 53 87 -
83 179 165 53.5 87.5 -
85 186 171 54 89 -
87 189 174 55 90 -
89 196 180 56 91 -

Table A1,1.5-1 Hardness Conversion Table (Cont'd)
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A1,1.5 Hardness Conversion Table (Cont'd)
Tensile | Vickers- Brinell Rockwell
Strength | Firth 3000 kg
Diamond 10mm Sti A Scale B Scale C Scale
' Ball
60 kg 100 kg 150 kg
ksi Hardness Hardness 120 deg 1/16 in, 120 deg
Number Number Diamond Dia Stl Diamond
Cone Ball Cone
91 203 186 56.5 92,5 -
93 207 190 57 93,5 -
95 211 193 57 94 -
97 215 197 57.5 95 -
99 219 201 57.5 95,5 -
102 227 210 59 97 -
104 235 220 60 98 19
107 240 225 60.5 99 20
110 245 230 61 99.5 21
112 250 235 61.5 100 22
115 255 244 62 101 23
118 261 247 62.5 101.5 24
120 267 253 63 102 25

Table A1,1,5-1 Hardness Conversion Table (Cont'd)
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A1,1.5 Hardness Conversion Table (Cont'd)
Tensile | Vickers- Brinell Rockwell
Strength | Firth 3000 kg
Diamond 10mm Stl A Scale B Scale C Scale
Ball
60 kg 100 kg 150 kg
Ksi Hardness Hardness 120 deg 1/16 in, 120 deg
Number Number Diamond Dia Stl Diamond
Cone Ball Cone
123 274 259 63.5 103 26
126 281 265 64 - 27
129 288 272 64.5 - 28
132 296 279 65 - 29
136 304 286 65.5 - 30
139 312 294 66 - 31
142 321 301 66.5 - 32
147 330 309 67 - 33
150 339 318 67,5 - 34
155 348 327 68 - 35
160 357 337 68.5 -— 36
165 367 347 69 - 37
170 376 357 69,5 - 38
176 386 367 70 -— 39

Table A1, 1.5~1

Hardness Conversion Tahble (Cont'd)
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Ail,1.5 Hardness Conversion Table (Cont'd)
Tensile } Vickers- Brinell Rockwell
Strength | Pirth 3000 kg :
Diamond 10mm Stl A Scale B Scale C Scale
Ball
60 kg 100 kg 150 kg

ksi Hardness Hardness 120 deg 1/16 in, 120 deg

Number Number Diamond Dia Stl Diamond

Cone Ball Cone

181 396 377 70,5 - 40
188 406 387 71 - 44
194 4417 398 71.5 - 42
201 428 408 72 - 43
208 440 419 72,5 - 44
215 452 430 73 - 45
221 465 442 73.5 - 46
231 479 453 74 - 47
237 493 464 75 - 48
246 508 476 75.5 - 49
256 523 488 76 - 50
264 539 500 76.5 - 51
273 556 512 77 - 52
283 b73 524 77.5 - 53

Table Al,1,5-1 Hardness Conversion Table

(Cont'd)
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A1,1.5 Hardness Conversion Table (Cont'd)
Tensile | Vickers- Brinell Rockwell
Strength | Firth 3000 kg
Diamond 10mm Stl A Scale B Scale C Scale
Ball
60 kg 100 kg 150 kg
ki Hardness Hardness 120 deg 1/16 in, 120 deg
Number Number Diamond Dia Stl Diamond
Cone Ball Cone
294 592 536 78 -— 54
304 611 548 78,5 - 55

Table A1,1,5-1 Hardness Conversion Table (Concluded)

Al1.2.0 Elementary Theory of the Mechanics of Materials

In the elementary theory of mechanics of materials, a uni-axial state of
strain is generally assumed, This state of strain is characterized by the simpli-
fied form of Hooke's law; namely f = E €, where € is the unit strain in the direc-
tion of the unit stress f, and E is the Modulus of Elasticity. The strains in the
perpendicular directions ( Poisson's ratio effect) are neglected. This is generally
justified in most elementary and practical applications considered in the theory
of mechanics of materials, In these applications, the structural members are
generally subjected to a uni-axial state of stress and/or the strains and dis-
placements are of secondary importance. Also, in these applications, the
magnitude of each of a set of bi-axial stresses (when this occurs) is generally
independent of the Poisson's ratio effect,

Frequently in design, there are applications in which the magnitude of each
of a set of bi-axial (or tri-axial) stresses are dependent upon the Poisson's
ratio effect; and/or the magnitude of the strains and displacements are of pri-
mary importance, This type of application must be generally analyzed by the
theory of elasticity, A brief account on the use of the theory of elasticity for
elementary applications is given in the next subsection,
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A1,3,0 Elementary Applications of the Theory of Elasticity

The difference between the method of ordinary mechanics and the theory of
elasticity is that ho simplifying assumption is made concerning the strains in the
latter, Because of thig, it becomes necessary to take into account the complete
distribution of the strains in the body and to assume a more general statement
of Hooke's law in expressing the relation hetween stresses and straing, It is
noted that the stresses calculated by both methods are only approximate since
the material in the physical body deviates from the ideal material assumed by
both methods.

Some of the following subsections are written for a three dimensional stress
field but are applicable to problems in two dimension simply by neglecting all

terms containing the third dimension,

A1, 3,1 Notation for Forces and Stresses

The stresses acting on the side of a cubic element can be described by six
components of stress, namely the three normal stresses fiy, fyy, f33, and the
three shearing stresses fy; = fyy, fy3 = f34, f93 = 3. '

In Figure A1, 3.1-1 shearing stresses are resolved into two components
parallel to the coordinate axis, Two subscript numbers are used, the first
indicating the direction normal to the plane under consideration and the second
indicating the direction of the component of the stress, Normal stresses have
like subscripts and positive directions are as shown in the figure. An analogous
notation for the x-y coordinate system is:

= Xz
f
f22 - fy 22
1.

f12 = fS f23/—." 21
fy9

fﬂz |
[ - f

) f31 f13 1 .'X.,
f33

Figure A1.3.1-1 Representation of Stresses on
an Element of a Body
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A1,3,1 Notation for Forces and Stresses (Cont'd)

Surface forces

Forces distributed over the surface of the body, such as pressure of one
body on another, or hydrostatic pressure, are called surface forces,

Body forces

Body forces are forces that are distributed over the volume of a body, such
as gravitational forces, magnetic forces, or inertia forces in the case of a body
in motion.

A1, 3.2 Specification of Stress at a Point

If the components of stress in Figure A1, 3,.1-2 are known for any given
point, the stress acting on any inclined plane through this point can be calculated
from the equations of statics, Body forces, such as weight of the element, can
generally be neglected since they are of higher order than surface forces.

Figure A1,3.1-2 An Element Used in Specifying Stress at a Point
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Al,3.2 Specification of Stress at a Point ( Cont'd)

If A denotes the area of the inclined face BCD of the tetrahedron in Figure
A1, 3.1-2, then the areas of the three faces are obtained by projecting A on the
three coordinate planes., Letting N be the stress normal to the plane BCD, the
three components of stress acting parallel to the coordinate axes, are denoted
by Ny, N3, and N;. The components of force acting in the direction of the co-
ordinates X;, X;, X3 are ANy, ANy, and AN, respectively. Another useful
relationship can be written as:

lcos (Ny) =k, cos (Ny) =m, cos (N3) =n (1)

and the areas of the other faces are Ak, Am, An.

The equations of equilibrium of the tetrahedron can then be written as:

NI = f“k+f12m +f13n

N, = flpk+fy m +1fppn (2)
N3 '—"vfwk +f23 m +f33n

The principal stresses for a given set of stress components can be deter-
mined by the solution of the following cubic equation:

fpa = (fqq + £y + f33) fpz + (fyq fap + fpp Fgg + £y £3g ~ £35°

(3)
- f45? = £159) £, ~ (f1y fop fog + g 15 10 = £33 £3° - £p £57 - £33 £157) = 0

The three roots of this equation give the values of the three principal stresses,
The three corresponding sets of direction cosines for the three principal planes
can be obtained by substituting each of these stresses (one set for each principal
stress) into Equations 3 and using the relation k% + m? + n? = 1,
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A1,.8.2 Specification of Stress at a Point (Cont'd)
(fp—fu) k-ftzm -f13n=0
f12k+(fp—f22)m—f23n=0 (4)

flék-f23m+(fp-f33)n=0

The shearing stresses associated with the three principal stresses can be
obtained by:

1 1
fi2 = + 3 (fpy = fpa) 13 = =5 (fp1 - fp3) » 5

1
28 = x5 (fpz - fp3)

where the superscript notation is used to distinguish between the applied shearing
stresses and the stresses associated with the principal normal stresses fP1 s
fp2 , and fp .

The maximum shearing stress acts on the plane bisecting the angle between
the largest and the smallest principal stresses and is equal to half the difference
between these two principal stresses.

A1,3.3 Equations of Equilibrium

Since no simplifying assumption is permitted as to the distribution of strain
in the theory of elasticity, the equilibrium and the continuity of each element
within the body must be considered. These considerations are discussed in this
and the subsequent subsections.

Let the components of the specific body force be denoted by X,, X,, X3,
then the equation of equilibrium in a given direction is obtained by summ ing all
the forces in that direction and proceeding to the limit. The resulting differen-
tial equations of equilibrium for three dimensions are:
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A1,3.3 Equations of Equilibrium (Cont'd)

8x, 09X,  0Xg 1

of
22 + Bfi 2 + 8f23
9Xy 0%y  0Xg

1
<

+X2_

of of of
33 + 13 + 23
ox3  9x4 9Xy

+X3

il
<

These equations must be satisfied at all points throughout the body.

(6)

The

internal stresses must be in equilibrium with the external forces on the surface
of the body, These conditions of equilibrium at the boundary are obtained by

considering the stresses acting on Figure Al, 3. 3~1,

l._...... p—— ——— e w—— s
12 o 23

™

Figure A1.3,3-1 An Element Used in Deriving the Equations of Equilibrium
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A1,3.3 Equations of Equilibrium (Cont'd)

By use of Equations 1 and summing forces the boundary equations are:

Xy =fyk+fpm+ign
Xy = fppm +fgn+fk (7)
.}—(3 = f33n+f13k+f23m

in which k, m, n are the direction cosines of the_ external normal to the surface
of the body at the point under consideration and X;, X,, X; are the components
of the surface forces per unit area.

The Equations 6 and 7 in terms of the six components of stress, fyy, fy,,
fa3, f12, f13, f93 are statically indeterminate. Consideration of the elastic deforma-
tions is necessary to complete the description of the stressed body, This is
done by considering the elastic deformations of the body.

A1, 3.4 Distribution of Strains in a Body

The relations between the components of stress and the components of strain
have been established experimentally and are known as Hooke's law, For small
deformations where superposition applies, Hooke's law in three dimensions for
normal strain is written as:

1
€1 = ¢ [f11 - v (I + f53) ]
1
€ =% [f2g ~ v (fyy + 133) ] (8)

1
€3 = 5 lf53 - v (1 + 159 ]
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A1, 3.4 Distribution of Strains in a Body (Cont'd)
and for shearing strain
_(ii_l’l pSP)
Y12 = f12 = 5
2(1 +v) f
Yis =T g 3= ‘g (9)
i+v fas
Yoz = “(‘_‘)'fzs G

These six components of strains can be expressed in terms of the three
components of displacements. By considering the deformation of a small ele-
ment dxq, dx,, dx, of an elastic body with u, v, w as the components of the dis-
placement of the point 0. The displacement in the x; - direction of an adjacent
point A on the x; axis is

ou
+ ————
1% axl dx,

due to the increase (8u/8x,)dx; of the function u with increase of the coordinate
X It follows that the unit elongation at point 0 in the x, direction is du/8x,.

In the same manner it can be shown that the unit elongations in the x; - and x5 -
directions are given by 9v/ox, and dw/8x; respectively.

The distortion of the angle from AOB to A'O'B' can be seen from Figure
Al,3.4-1 to be 8v/ x4 + du/8x,. This is the shearing strain between the planes
X4 X3 and x, X3, The shearing strains between the other two planes are obtained
similarly.

The 8ix components of strains in terms of the three displacements are:

oL _aw
1 3x1 ' 2 g 3 8X3
' (10)
- 8u av - ou | ow _8v_, 9w
M2 5, tax, 0 M8 Toxg ox, 0 TR T Bxg | 0xg
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A1,3.4 Distribution of Strains in a Body (Cont'd)

XZ u+al"— dxz
9X2
Ix
<=8 ”
A
dxz 0t amu— ot

Figure A1, 3,4-1 Distortions Due to Normal and Shearing Stresses Used
to Define Strains in Terms of Displacements

A1.3.5 Conditions of Compatibility

The conditions of compatibility, that assure continuity of the structure,
can be satisfied by obtaining the relationship between the strains in Equations 10.
The relationship can be obtained by purely mathematical manipulation as follows:

Differentiating €; twice with respect to_x,; €, twice with respect to x;; and
v42 once with respect to x; and once with respect x;. The sum of the derivatives
of €4 and ¢, is found to be identical to the derivative of y;,. Therefore,

3% o _ dvip
axy = ox{ 9X9Xy
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Al,3.5 Conditions of Compatibility (Cont'd)

Two more relationships of the same kind can be obtained by cyclic interchange
of the subscripts 1, 2, 3.

Another set of equations can be found by further mathematical manipulation
as follows:

Differentiate e; once with respect to x; and once with respect to xg; vy
once with respect to x; and once with respect to x5; ;3 once with respect to x4
and once with respect to xy; and vy3 twice with respect to x;. It then follows that

2 2 2
g 0% _9%ip ¥y _
IXy0X3  OX0X3  0Xy0Xy 9x4

Two additional relationships can be found by the cyclic interchange of sub-
scripts as before,

The six differential relations between the components of strain are called
the equations of compatibility and are given below.

o %y _ Oy e b (ovy , Y 2vn)
ox7 | Bx{  09X9X, ' dxpdxg 0%\ 0X3 = 0%y 0x5 )’

dleg | ey dyy - e 03y My On (11)
0% 89Xy  8X99%Xy ' Ox9Xg  OX\ 0Xj ox,  ox4 /'

3263 + 3261 - 8?')’13 28 _ 12 Y13 + 3')’23

ox{ = 0x4  9xy9xy ’ 8x16xz 8x3 8x3 8x2 9%,

These equations of compatibility may be stated in terms of the stresses if
the strains in Equations 11 are expressed in terms of the stresses by Hooke's

law (Equations 8 and 9). Differentiating each of Equations 8 and 9 as required
for substitution, we have
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A1, 3.5 Conditions of Compatibility (Cont'd)
8% 9 9%
(1+V)V2f“+‘g{-1§=0 , (1+V)Vf23+m=0
9 a%e 5 8%
(1+v)Vf22+5;(?—0 , (1+V)Vf13+3X18X3 =0 (12)
2 2
2 %6 _ 2 9 -
where:
SIS
aXl -8X2 3X3
and

g = fi‘l + f22 + f33

For most cases where strains are linear and superposition applies, the
system of Equations 6, 7, and 11 or 12 are sufficient to determine the stress
components without ambiguity, The use of stress functions to aid in the solution
of these equations are discussed below,

A1l,3,6 Stress Functions

It has been shown in the previous sections that the differential equations
of equilibrium (Equations 6) ensure a distribution of stress in a body that pre-
serves the equilibrium of every element in the body. The fact that these are
satisfied does not necessarily mean that the distribution of stresses are correct
since the boundary stresses must also be satisfied, The compatibility equations
{Equations 11) must also be satisfied to ensure the proper strain distribution
throughout the body. The problem is then to find an expression that satisfies all
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A1,.3,6 Stress Functions (Cont'd)

these conditions. The usual procedure is to introduce a function called a stress
function that meets this requirement, For the sake of simplicity, this section
will deal only with problems in two dimensions. The stresses due to the weight
of the body will also be neglected.

In 1862,G. B. Airy introduced a stress function (¢ (x{, x,)) which is an ex-
pression that satisfies both Equations 6 and 11 (in two dimension) when the
stresses are described by:

_ 8 %
f_“ T axg f2 = 52% v b2 = - 9x,0% (13)

" By operating on Equations 13 and substituting into Equations 11, we find that the
stress function ¢ must satisfy the equation

a‘g 8le  o'¢ _ 4 ,
+ + = = 4
Bxi . 2 8x128x22 BX; v ¢ 0 (I )

Thus the solution of a two-dimensional problem reduces to finding a solution
of the biharmonic equation (Equation 14) which satisfies the boundary conditions
(7) of the problem,

Ai,3.7 Use of Equations from the Theory of Elasticity

Proficiency in the use of stress functions is gained mainly by experience,
1t is not unusual to find an expression that satisfies Equation 14 first and then try
to determine what problem it solves.

The following problem is presented to illustrate the basic procedure in the
use of stress functions,
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A1.3,7 Use of Equations from the Theory of Elasticity (Cont'd)

Statement of the problem:

Determine the stress function that corresponds to the boundary conditions
for a cantilever beam of rectangular cross section of unit width and loaded as
shown in Figure A1l, 3,7-1. From this stress function determine the stresses
and compare with the maximum flexure stresses as obtained by the method of

mechanics,
p/unit length
y
o | /
h - - —/
/
1 /
J
- L
| s
X2
Figure A{,3,7-1 Sample Problem
Solution:

Agsume that the stress function is
¢ = axg +bxgxl + cxj + dxx! + exf
Operate on ¢ to satisfy Equation 14

Vi = (5+4*3.2) axy + 2(3:2:2bx,) = 0

24 x, (52 +b) = 0

from which a = - b/5

<
o]

|

{

k=]
1 :
o

og

i

|
<[

(a)



Section A1l
March 1, 1965
Page 30

A1,3.7 Use of Equations from the Theory of Elasticity (Cont'd)

Since Equation 14 can now be satisfied by letting a = - b/ 5, the only other
condition to satisfy is the boundary conditions.

From Figure A1, 3.7-1 the boundary conditions are as follows:

1, fzz = -p at X9 = - h/2

h/2

2, fzz =0 at Xg

h/2
3. [ fpdxy=-pL at x, =L from ZF=0
-h/2

h/2
4, f fiyXpdx, = -pL%2 at x;=1L from IM=0
-h/2

5. f12 =90 at X9 = h/2

From Equation 13

2
fu = g’& = 203.X23 + 6bX12X2 + GCXZ

32
foe = &% = 2bx$ + 2hx, + 2e (b)
1

2
. -6bx#x, - 2hx,

f‘IZ - aXIBXZ

Using boundary condition 1

2bh®  2dh
f22=-p=-8——7+2e (C)
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A1,3,7 Use of Equations from the Theory of Elasticity (Cont'd)

from boundary condition 2

3
f22=0=’g'§8£—+'2%‘11+26 {d)

adding (c¢) and (d)

4e = -p or e =-p/4 (e)

from boundary condition 3

h/2 h/2

f f‘12 dXz = f ['— 6bX22X1 - 2hX1] dXz
~h/2 ~-h/2

6 h/2
= [- 3 bLx§ - 2th2]0 = -pL ()
3

or El—zl— + 2dh < p

from boundary condition 4

h/2 h/2

f fﬂXz dXz = f [203.)(24 + 6bX12X22 + 60}(22] dXz
-h/2 -h/2

20a 6 4 h/2
{""—“‘Xin ECXQ

0

_ ah® L bLMS  ch?
T4 2 2

= ~ pL%/2
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A1, 3.7 Use of Equations from the Theory of Elasticity (Cont'd)

substituting Equation a and solving for ¢

-pL? - b (L?h® - h%/10)
c = h3

(8)

from boundary condition 5
-6
fip = - bh’x - 2dx; = 0

=4 -g- bh? & 2d)

or
-4d
b = nZ (h)

Solving Equations f and h simultaneously we get

and b = -p/h3 (1)

jo
1l
B

Substituting b = - p/h® into Equation g

£ (j)

T
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A1,3.7 Use of Equations from the Theory of Elasticity (Cont'd)

The stress function can now he written as

¢ = -px{ (x7/h% - 3xy/4h + 1/4)
(k)
+(ph%/5) (x§/h® - x§/2h%)

and the stresses as (see Equations b)

fiy = —'221_ (x{xy + h¥xp/10 - 2x7/3) .
fao = —% (x3/3 - h¥xy/4 + h¥/12) ()
fiz = ff (x§ % - hx)/4) ™

where I = h3/12

Comparison of maximum flexure stresses from Equation 1 with x; = L,
X9 = = h/2

elasticity _ ph [ , h?
fli T 4] (L T 15 (0)

from elementary mechanics

mechanics _ Mec - HL2 h

fll 1 41 (p)
The difference is then
elasticity _mechanics h3
f14 - ="g_0‘f="15)‘ ()
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A1.4.0 Theories of Failure

Several theories have been advanced to aid in the prediction of the critical
load combination on a structural member. Each theory is based on the assump-
tion that a specific combination of stresses or strains constitutes the limiting
condition, The margin of safety of a member is then predicted by comparing
the stress, the strain, or combination of stress and strain with the correspond-
ing factors as determined from tests on the material.

Three of the more useful theories are stated in this subsection. A more
detailed discussion on these and other theories of failure can be found in most

elementary strength analysis text books such as references 2 and 3.

The Maximum Normal Stress Theory

The maximum normal stress theory of failure states that inelastic action at
any point in a material begins only when the maximum principal stress at the
point reaches a value equal to the tensile (or compressive) yield strength of the
material as found in a simple tension (or compression) test. The normal or
shearing stresses that occur on other planes through the point are neglected.

The Maximum Shearing Stress Theory

The maximum shearing stress theory is based on the assumption that yield-
ing begins when the maximum shear stress in the material becomes equal to the
maximum shear stress at the yield point in a simple tension specimen. To apply
it, the principal stresses are first determined, then, according to Equation 5,

1j
max

1
f = 3(f f

pi ~ ipy

where i and j are associated with the maximum and minimum principal stresses
respectively.

The Maximum Energy of Distortion Theory

The maximum energy of distortion theory states that inelastic action at any
point in a body under any combination of stresses begins only when the strain
energy of distortion per unit volume absorbed at the point is equal to the strain
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A1.4.0 Theories of Failure (Cont'd)

energy of distortion absorbed per unit volume at any point in a bar stressed to

the elastic limit under a state of uniaxial stress as occurs in a simple tension

(or compression) test. The value of this maximum strain energy of distortion
as determined from the uniaxial test is

1+ 9
3E yp

W1=

and the strain energy of distortion in the general case is

1+
6E

= _ 2 - 2 _ 2

where fpi, fpz’ fps are the principal stresses and Fyp is the yield point stress.
( For the casge of a biaxial state of stress, fp3 = 0,)

H

The condition for yielding is then, w = w; or

(f

2 2 2 2
oy = Ip) + (g = ) + (£, ~ 107 = 2F )

Al, 4.1 Elastic Failure

The choice of the proper theory of failure is dependent on the behavior of
the material, It is suggested that the maximum principal stress theory be used
for brittle materials and either the maximum energy of distortion theory or the
maximum-shearing-stress theory for ductile materials,

The choice between the two methods for ductile materials may be made by
considering the particular application. When failure of the component leads to
catastrophic results, the maximum-shearing-stress theory should be used
since the results are on the safe side.
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Al,4,.2 Interaction Curves

No general theory exists which applies in all cases for combined loading
conditions in which failure is caused by instability, Interaction curyes for the
instability case or other critical load conditions are usually determined from
or substantiated by structural tests, The analysis of various loading combina-
tions are discussed in Section A3,
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A1,0,0 Stress and Strain
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